Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Department of Atmospheric Science, China University of Geosciences, Wuhan 430074, China
Centre for Severe Weather and Climate and Hydro-Geological Hazards, 430074 Wuhan, China
Wenshou Tian
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Rui Huang
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Mian Xu
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Tao Wang
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Yifeng Peng
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Related authors
No articles found.
Ilaria Quaglia, Daniele Visioni, Ewa M. Bednarz, Yunqian Zhu, Georgiy Stenchikov, Valentina Aquila, Cheng-Cheng Liu, Graham W. Mann, Yifeng Peng, Takashi Sekiya, Simone Tilmes, Xinyue Wang, Shingo Watanabe, Pengfei Yu, Jun Zhang, and Wandi Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3769, https://doi.org/10.5194/egusphere-2025-3769, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
On January 15, 2022, the Hunga volcano eruption released unprecedented amounts of water vapor into the atmosphere alongside a modest amount of SO2. In this work we analyse results from multiple Earth system models. The models agree that the eruption led to small negative radiative forcing from sulfate aerosols and that the contribution from water vapor was minimal. Therefore, the Hunga eruption cannot explain the exceptional surface warming observed in 2023.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3452, https://doi.org/10.5194/egusphere-2025-3452, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropopause height is a key climate change indicator, with accurate long-term trends vital for climate research. Radiosonde data, while reliable, has limited coverage. ERA5 is a reanalysis dataset that provides global data, enabling comparisons of tropopause height estimates and then analyzed for long-term trends. Results show a 32 m mean difference (radiosonde – ERA5) with trends of +5 m/year (radiosonde) and +3 m/year (ERA5), crucial for characterizing tropopause changes under climate change.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
Pengfei Yu, Yifeng Peng, Karen H. Rosenlof, Ru-Shan Gao, Robert W. Portmann, Martin Ross, Eric Ray, Jianchun Bian, Simone Tilmes, and Owen B. Toon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2312, https://doi.org/10.5194/egusphere-2025-2312, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) at 50 km improves climate intervention by reducing global cooling by 22 % and polar cooling by 40 %, preserving Arctic sea ice 20 % more effectively than traditional 25-km SAI. It also reduces Antarctic ozone depletion, shortening recovery delay from 25–55 years to about 5 years. Additionally, SAI at 50 km halves tropical lower stratospheric warming, minimizing disruptions to stratospheric water vapor and jet streams compared to the 25-km method.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4198, https://doi.org/10.5194/egusphere-2024-4198, 2025
Preprint withdrawn
Short summary
Short summary
The most commonly used tropopause height detection algorithm is based on the World Meteorological Organization (WMO) definition from 1957. However, with the increasing vertical resolution of atmospheric data, this definition has been found to fail in high-resolution radiosonde data. Thus, we propose an improved method to address this issue. This method can effectively bypassing thin inversions while preserving the fine–scale structure of the tropopause.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Wuke Wang, Jin Hong, Ming Shangguan, Hongyue Wang, Wei Jiang, and Shuyun Zhao
Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, https://doi.org/10.5194/acp-22-13695-2022, 2022
Short summary
Short summary
The ozone layer protects the life on the Earth by absorbing the ultraviolet (UV) radiation. Beside the long-term trend, there are strong interannual fluctuations in stratospheric ozone. The quasi-biennial oscillation (QBO) is an important interannual mode in the stratosphere. We show some new zonally asymmetric features of its impacts on stratospheric ozone using satellite data, ERA5 reanalysis, and model simulations, which is helpful for predicting the regional UV radiation at the surface.
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511, https://doi.org/10.5194/acp-22-9499-2022, https://doi.org/10.5194/acp-22-9499-2022, 2022
Short summary
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1096, https://doi.org/10.5194/acp-2021-1096, 2022
Publication in ACP not foreseen
Short summary
Short summary
The distribution of trace gases in the stratosphere impacts the thermal and dynamical structures of the atmosphere. The spatial structure of the trace gases is determined by the residual circulation and stirring and mixing processes. Currently the stirring is purely constrained due to lack of observation. Here we develop a diagnosis for stirring mainly based on the trace gas contour. The method is applied for estimating stirring and mixing effects on methane concentration in a polar vortex.
Cited articles
Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the
advective Brewer-Dobson circulation in three reanalyses for the period
1979–2012, J. Geophys. Res., 120, 7534–7554, https://doi.org/10.1002/2015JD023182, 2015.
Andrews, D. G. and Mcintyre, M. E.: Planetary waves in horizontal and
vertical shear: the generalized eliassen-palm relation and the mean zonal
acceleration, J. Atmos. Sci., 33, 2031–2048, 1976.
Ashfold, M. J., Pyle, J. A., Robinson, A. D., Meneguz, E., Nadzir, M. S. M., Phang, S. M., Samah, A. A., Ong, S., Ung, H. E., Peng, L. K., Yong, S. E., and Harris, N. R. P.: Rapid transport of East Asian pollution to the deep tropics, Atmos. Chem. Phys., 15, 3565–3573, https://doi.org/10.5194/acp-15-3565-2015, 2015.
Bergman, J. W., Jensen, E. J., Pfister, L., and Yang, Q.: Seasonal
differences of vertical-transport efficiency in the tropical tropopause
layer: On the interplay between tropical deep convection, large-scale
vertical ascent, and horizontal circulations, J. Geophys. Res., 117, D05302,
https://doi.org/10.1029/2011JD016992, 2012.
Brewer, A. M.: Evidence for a world circulation provides by the measurements
of helium and water vapor distribution in the stratosphere, Q. J. Roy.
Meteor. Soc., 75, 351–363, 1949.
Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W.,
Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E.,
Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R.,
Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E.,
McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi,
F., Scinocca, J. F., Shibata, K., Steil, B., and Tian, W.:
Chemistry–Climate Model simulations of twenty-first century stratospheric
climate and circulation changes, J. Climate, 23, 5349–5374,
https://doi.org/10.1175/2010JCLI3404.1, 2010.
Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S. E., and Murtugudde, R.: Twentieth-century sea surface temperature trends, Science, 275, 957–960, https://doi.org/10.1126/science.275.5302.957, 1997.
Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez-Alonso, S., Worden, H. M., Ziskin, D., and Andreae, M. O.: Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580, https://doi.org/10.5194/amt-12-4561-2019, 2019.
Deser, C., Phillips, A. S., and Alexander, M. A.: Twentieth century tropical
sea surface temperature trends revisited, Geophys. Res. Lett., 37,
L10701, https://doi.org/10.1029/2010GL043321, 2010.
Diallo, M., Ern, M., and Ploeger, F.: The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends, Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, 2021.
Dobson G. M. B.: Origin and distribution of the polyatomic molecules in the
atmosphere, Proc. R. Soc. Lond. Ser. A., 236, 187–193, 1956.
Duncan, B. N., Logan J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M.,
Novelli, P. C., Jones, N. B., and Rinsland, C. P.: Global budget of CO,
1988–1997: Source estimates and validation with a global model, J. Geophys.
Res., 112, D22301, https://doi.org/10.1029/2007JD008459, 2007.
Feng, W., Chipperfield, M. P., Dorf, M., Pfeilsticker, K., and Ricaud, P.: Mid-latitude ozone changes: studies with a 3-D CTM forced by ERA-40 analyses, Atmos. Chem. Phys., 7, 2357–2369, https://doi.org/10.5194/acp-7-2357-2007, 2007.
Fu, Q., Solomon, S., Pahlavan, H. A., and Lin, P.: Observed changes in
Brewer–Dobson circulation for 1980–2018, Environ. Res. Lett., 14, 114026,
https://doi.org/10.1088/1748-9326/ab4de7, 2019.
Fueglistaler, S., Wernli, H., and Peter, T.: Tropical
troposphere-to-stratosphere transport inferred from trajectory calculations,
J. Geophys. Res., 109, D03108, https://doi.org/10.1029/2003JD004069, 2004.
Fueglistaler, S., Desller, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote P.: Tropical tropopause layer, Rev. Geophys., 47, RG1004,
https://doi.org/10.1029/2008RG000267, 2009.
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.
Garfinkel, C. I., Waugh, D. W., Oman, L. D., Wang, L., and Hurwitz, M. M.:
Temperature trends in the tropical upper troposphere and lower stratosphere:
Connections with sea surface temperatures and implications for water vapor
and ozone, J. Geophys. Res., 118, 9658–9672, https://doi.org/10.1002/jgrd.50772, 2013.
Garfinkel, C. I., Waugh, D. W., and Polvani, L. M.: Recent Hadley cell
expansion: The role of internal atmospheric variability in reconciling
modeled and observed trends, Geophys. Res. Lett., 42, 10824–10831,
https://doi.org/10.1002/2015GL066942, 2015.
Garfinkel, C. I., Gordon, A., Oman, L. D., Li, F., Davis, S., and Pawson, S.: Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO, Atmos. Chem. Phys., 18, 4597–4615, https://doi.org/10.5194/acp-18-4597-2018, 2018.
Gelaro, R., Mccarty, W., and Suárez, M. J.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J.
Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available at: https://search.earthdata.nasa.gov/search?q=MERRA2&fst0=Atmosphere, last access: 5 March 2022).
Gettelman, A., Holton, J. R., and Douglass, A. R.: Simulations of water
vapor in the lower stratosphere and upper troposphere, J. Geophys. Res.,
105, 9003–9023, https://doi.org/10.1029/1999JD901133, 2000.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q.
J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980.
Girach, I. A. and Nair, P. R.: Carbon monoxide over Indian region as
observed by MOPITT, Atmos. Environ., 99, 599–609,
https://doi.org/10.1016/j.atmosenv.2014.10.019, 2014.
Haines, P. E. and Esler, J. G.: Determination of the source regions for
surface to stratosphere transport: An Eulerian backtracking approach,
Geophys. Res. Lett., 41, 1343–1349, https://doi.org/10.1002/2013GL058757, 2014.
Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S., Ota, Y.,
Onoda, H., Onogi, K., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis:
Representation of atmospheric circulation and climate variability, J.
Meteorol. Soc. Jpn., 94, 269–302, https://doi.org/10.2151/jmsj.2016-015, 2016 (data available at: http://rda.ucar.edu/datasets/ds628.0/, last access: 5 March 2022).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S, Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020 (data available at: https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset, last access: 5 March 2022).
Highwood, E. J. and Hoskins, B. J.: The tropical tropopause, Q. J. Roy.
Meteor. Soc., 124, 1579–1604, https://doi.org/10.1002/qj.49712454911, 1998.
Hitchcock, P.: On the value of reanalyses prior to 1979 for dynamical studies of stratosphere–troposphere coupling, Atmos. Chem. Phys., 19, 2749–2764, https://doi.org/10.5194/acp-19-2749-2019, 2019.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403–439, https://doi.org/10.1029/95RG02097, 1995.
Hosking, J. S., Russo, M. R., Braesicke, P., and Pyle, J. A.: Tropical convective transport and the Walker circulation, Atmos. Chem. Phys., 12, 9791–9797, https://doi.org/10.5194/acp-12-9791-2012, 2012.
Hu, D., Tian, W., Guan, Z., Guo, Y., and Dhomse, S.: Longitudinal asymmetric
trends of tropical cold-point tropopause temperature and their link to
strengthened Walker circulation, J. Climate, 29, 7755–7771,
https://doi.org/10.1175/JCLI-D-15-0851.1, 2016.
Hu, D., Guan, Z., Tian, W., and Ren, R.: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific, Nat. Commun, 9, 1697, https://doi.org/10.1038/s41467-018-04138-3, 2018.
Hu, P., Huangfu, J., Chen, W., and Huang, R.: Impacts of early/late South
China Sea summer monsoon withdrawal on tropical cyclone genesis over the
western North Pacific, Clim. Dynam., 55, 1507–1520,
https://doi.org/10.1007/s00382-020-05339-7, 2020.
Huang, L., Jiang, J. H., Murray, L. T., Damon, M. R., Su, H., and Livesey, N. J.: Evaluation of UTLS carbon monoxide simulations in GMI and GEOS-Chem chemical transport models using Aura MLS observations, Atmos. Chem. Phys., 16, 5641–5663, https://doi.org/10.5194/acp-16-5641-2016, 2016.
Krüger, K., Tegtmeier, S., and Rex, M.: Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL) during NH winter, Atmos. Chem. Phys., 8, 813–823, https://doi.org/10.5194/acp-8-813-2008, 2008.
Levine, J. G., Braesicke, P., Harris, N. R. P., Savage, N. H., and Pyle, J.
A.: Pathways and timescales for troposphere-to-stratosphere transport via
the tropical tropopause layer and their relevance for very short lived
substances, J. Geophys. Res., 112, D04308, https://doi.org/10.1029/2005JD006940, 2007.
Levine, J. G., Braesicke, P., Harris, N. R. P., and Pyle, J. A.: Seasonal and inter-annual variations in troposphere-to-stratosphere transport from the tropical tropopause layer, Atmos. Chem. Phys., 8, 3689–3703, https://doi.org/10.5194/acp-8-3689-2008, 2008.
L'Heureux, M. L., Lee, S., and Lyon, B.: Recent multidecadal strengthening
of the Walker circulation across the tropical Pacific, Nat. Clim. Change, 3,
571–576, https://doi.org/10.1038/nclimate1840, 2013.
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated) outgoing longwave radiation dataset, B. Am. Meteorol. Soc., 77, 1275–1277, http://www.jstor.org/stable/26233278 (last access: 5 March 2022), 1996 (data available at: https://psl.noaa.gov/data/gridded/data.interp_OLR.html, last access: 5 March 2022).
Lin, P., Ming, Y., and Ramaswamy, V.: Tropical climate change control of the
lower stratospheric circulation, Geophys. Res. Lett., 42, 941–948, https://doi.org/10.1002/2014GL062823, 2015.
Livesey, N. J., Logan, J. A., Santee, M. L., Waters, J. W., Doherty, R. M., Read, W. G., Froidevaux, L., and Jiang, J. H.: Interrelated variations of O3, CO and deep convection in the tropical/subtropical upper troposphere observed by the Aura Microwave Limb Sounder (MLS) during 2004–2011, Atmos. Chem. Phys., 13, 579–598, https://doi.org/10.5194/acp-13-579-2013, 2013.
Livesey, N. J., Read,W. G.,Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Millán, L., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Martinez, E.: EOS MLS Version 4.2x Level 2 data quality and description document, Tech. Rep., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1–162, http://mls.jpl.nasa.gov/ (last access: 5 March 2022), 2015.
Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, 2017.
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under
global warming, Geophys. Res. Lett., 34, L06805,
https://doi.org/10.1029/2006GL028443, 2007.
Lu, J., Xie, F., Sun, C., Luo, J., Cai, Q., Zhang, J., Li, J., and Tian, H.:
Analysis of factors influencing tropical lower stratospheric water vapor
during 1980–2017, npj Clim. Atmos. Sci., 3, 35,
https://doi.org/10.1038/s41612-020-00138-7, 2020.
Ma, S., and Zhou, T.: Robust Strengthening and Westward Shift of the
Tropical Pacific Walker Circulation during 1979–2012: A Comparison of 7
Sets of Reanalysis Data and 26 CMIP5 Models, J. Climate, 29, 3097–3118,
https://doi.org/10.1175/JCLI-D-15-0398.1, 2016.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J., Calvo, N., and
Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield,
M., Jin, F., and Chikamoto, Y.: Recent Walker circulation strengthening and
Pacifific cooling amplifified by Atlantic warming, Nat. Clim. Change, 4,
888–882, https://doi.org/10.1038/nclimate2330, 2014.
Meng, Q., Latif, M., Park, W., Keenlyside, N. S., Semenov, V. A., and
Martin, T.: Twentieth century Walker circulation change: Data analysis and
model experiments, Clim. Dynam., 38, 1757–1773,
https://doi.org/10.1007/s00382-011-1047-8, 2012.
Minganti, D., Chabrillat, S., Christophe, Y., Errera, Q., Abalos, M., Prignon, M., Kinnison, D. E., and Mahieu, E.: Climatological impact of the Brewer–Dobson circulation on the N2O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses, Atmos. Chem. Phys., 20, 12609–12631, https://doi.org/10.5194/acp-20-12609-2020, 2020.
Navarro, M. A., Atlas, E. L., Saiz-Lopez, A., Rodriguez-Lloveras, X., Kinnison, D. E., Lamarque, J., Tilmes, S., Filus, M., Harris, N. R. P., Meneguz, E., Ashfold, M. J., Manning, A. J., Cuevas, C. A., Schauffler, S. M., and Donets, V.: Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer, P. Natl. Acad. Sci. USA, 112, 13789–13793, https://doi.org/10.1073/pnas.1511463112, 2015.
Newell, R. E., and Gould-Stewart, S.: A stratospheric fountain?, J. Atmos.
Sci., 38, 2789–2796, https://doi.org/10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2, 1981.
Newton, R., Vaughan, G., Hintsa, E., Filus, M. T., Pan, L. L., Honomichl, S., Atlas, E., Andrews, S. J., and Carpenter, L. J.: Observations of ozone-poor air in the tropical tropopause layer, Atmos. Chem. Phys., 18, 5157–5171, https://doi.org/10.5194/acp-18-5157-2018, 2018.
Pan, L. L., Atlas, E. L., Salawitch, R. J., Honomichl, S. B., Bresch, J. F., Randel, W. J., Apel, E. C., Hornbrook, R. S., Weinheimer, A. J., Anderson, D. C., Andrews, S. J., Baidar, S., Beaton, S. P., Campos, T. L., Carpenter, L.J., Chen, D., Dix, B., Donets, V., Hall, S. R., Hanisco, T. F., Homeyer, C. R., Huey, L. G., Jensen, J. B., Kaser, L., Kinnison, D. E., Koenig, T. K., Lamarque, J.-F., Liu, C., Luo., J., Luo, Z. J., Montzka, D. D., Nicely, J. M., Pierce, R. B., Riemer, D. D., Robinson, T., Romashkin, P., Saiz-Lopez, A., Schauffler, S., Shieh, O., Stell, M. H., Ullmann, K., Vaughan, G., Volkamer, R., and Wolfe. G.: The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment, B. Am. Meteorol. Soc., 98, 106–128, https://doi.org/10.1175/BAMS-D-14-00272.1, 2016.
Pan, L. L., Honomichl, S. B., Thornberry, T., Rollins, A., Bui, T. P.,
Pfister, L., and Jensen E. E.: Observational Evidence of Horizontal
Transport-Driven Dehydration in the TTL, Geophys. Res. Lett., 46,
7848–7856, https://doi.org/10.1029/2019GL083647, 2019.
Park, M., Randel, W. J., Emmons, L. K., and Livesey, N. J.: Transport
pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model
of Ozon and Related Tracers (MOZART), J. Geophys. Res., 144, D08303,
https://doi.org/10.1029/2008JD010621, 2009.
Qie, K., Qie, X., and Tian, W.: Increasing trend of lightning activity in
the South Asia region, Sci. Bull., 66, 78–84,
https://doi.org/10.1016/j.scib.2020.08.033, 2021.
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical
tropopause layer and their roles in a changing climate, Nat. Geosci., 6,
169–176, https://doi.org/10.1038/ngeo1733, 2013.
Rao, J., Yu, Y., Guo, D., Shi, C., Chen, D., and Hu, D.: Evaluating the Brewer-Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth Planet. Phys., 3, 166–181, https://doi.org/10.26464/epp2019012, 2019.
Rayner, N., Parker, D., Horton, E., Folland, C. K., Alexander, L., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003 (data available at: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, last access: 5 March 2022).
Rosenlof, K. H.: How water enters the stratosphere, Science, 302, 1691–1692,
https://doi.org/10.1126/science.1092703, 2003.
Ryu, J. and Lee, S.: Effect of tropical waves on the tropical tropopause
transition layer upwelling, J. Atmos. Sci., 67, 3130–3148,
https://doi.org/10.1175/2010JAS3434.1, 2010.
Schoeberl, M. R., Jensen, E. J., Pfister, L., Ueyama, R., Avery, M., and
Dessler, A. E.: Convective hydration of the upper troposphere and lower
stratosphere, J. Geophys. Res., 123, 4583–4593,
https://doi.org/10.1029/2018JD028286, 2018.
Sherwood, S. C.: A stratospheric “drain” over the maritime continent,
Geophys. Res. Lett., 27, 677–680, https://doi.org/10.1029/1999GL010868,
2000.
Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G. A.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, 2013.
Shirley, D., Stanley, W., and Daniel, C.: Statistics for Research, third edn., John Wiley & Sons Inc., Hoboken, New Jersey, p. 627, ISBN 0-471-26735-X, 2004.
Simmons, A. J., Poli, P., Dee, D. P., Berrisford, P., Hersbach, H.,
Kobayashi, S., and Peubey, C.: Estimating lowfrequency variability and
trends in atmospheric temperature using ERA-Interim, Q. J. Roy. Meteor.
Soc., 140, 329–353, https://doi.org/10.1002/qj.2317, 2014.
Sinnhuber, B.-M., Sheode, N., Sinnhuber, M., Chipperfield, M. P., and Feng, W.: The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study, Atmos. Chem. Phys., 9, 2863–2871, https://doi.org/10.5194/acp-9-2863-2009, 2009.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J. S., Wargan, K., and Wright, J. S.: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer, Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, 2020.
Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., and Okumura, Y. M.:
Slowdown of the Walker circulation driven by tropical Indo-Pacifific
warming, Nature, 491, 439–443, https://doi.org/10.1038/nature11576, 2012.
Uma, K. N., Das, S. S., Ratnam, M. V., and Suneeth, K. V.: Assessment of vertical air motion among reanalyses and qualitative comparison with very-high-frequency radar measurements over two tropical stations, Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021, 2021.
Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P.,Baidar, S., Dix, B., Koenig, T. K., Volkamer, R., Chen, D., Huey, L. G., Tanner, D. J., Cuevas, C. A., Fernandez, R. P., Kinnison, D. E., Lamarque, J.-F., Saiz-Lopez, A., Atlas, E. L., Hall, S. R., Navarro, M. A., Pan, L. L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A.J., Akiyoshi, H., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., and Zeng, G.: Stratospheric injection of Brominated very short-lived substances: Aircraft observations in the western Pacific and representation in global models, J. Geophys. Res., 123, 5690–5719, https://doi.org/10.1029/2017JD027978, 2017.
Wang, W., Tian, W., Dhomse, S., Xie, F., Shu, J., and Austin, J.: Stratospheric ozone depletion from future nitrous oxide increases, Atmos. Chem. Phys., 14, 12967–12982, https://doi.org/10.5194/acp-14-12967-2014, 2014.
Wang, W., Matthes, K., and Schmidt, T.: Quantifying contributions to the recent temperature variability in the tropical tropopause layer, Atmos. Chem. Phys., 15, 5815–5826, https://doi.org/10.5194/acp-15-5815-2015, 2015.
Wang, W., Matthes, K., Omarani, N.-E., and Latif, M.: Decadal variability of
tropical tropopause temperature and its relationship to the Pacific Decadal
Oscillation, Sci. Rep., 6, 29537, https://doi.org/10.1038/srep29537, 2016.
Webster, P. J. and Lukas, R.: TOGA COARE: the coupled ocean-atmosphere response
experiment, B. Am. Meteorol. Soc., 73, 1377–1416,
https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2,
1992.
Webster, P. J., Clayson, C. A., and Curry, J. A.: Clouds, radiation, and the
diurnal cycle of sea surface temperature in the tropical western Pacific, J.
Climate, 8, 1712–1730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2, 1996.
Xiao, Y., Jacob, D. J., and Turquety, S.: Atmospheric acetylene and its
relationship with CO as an indicator of air mass age, J. Geophys. Res., 112,
D12305, https://doi.org/10.1029/2006JD008268, 2007.
Xie, F., Li, J., Tian, W., Feng, J., and Huo, Y.: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere, Atmos. Chem. Phys., 12, 5259–5273, https://doi.org/10.5194/acp-12-5259-2012, 2012.
Xie, F., Li, J., Tian, W., Li, Y., and Feng, J.: Indo-Pacific Warm Pool Area
Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature
Variations, Sci. Rep., 4, 4552, https://doi.org/10.1038/srep04552, 2014a.
Xie, F., Li, J., Tian, W., Zhang, J., and Shu, J.: The impacts of two types
of El Niño on global ozone variations in the last three decades, Adv.
Atmos. Sci., 31, 1113–1126, https://doi.org/10.1007/s00376-013-3166-0, 2014b.
Xie, F., Tian, W., Zhou, X., Zhang, J., Xia, Y., and Lu, J.: Increase in
lower stratospheric water vapor in the past 100 years related to tropical
Atlantic warming, Geophys. Res. Lett., 47, e2020GL090539, https://doi.org/10.1029/2020GL090539, 2020.
Zhou, X., Chen, Q., Li, Y., Zhao, Y., Lin, Y., and Jiang, Y.: Impacts of the
Indo-Pacific warm pool on lower stratospheric water vapor: Seasonality and
hemispheric contrasts, J. Geophys. Res., 126, e2020JD034363,
https://doi.org/10.1029/2020JD034363, 2021.
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
We identify a significantly intensified upward motion over the tropical western Pacific (TWP)...
Altmetrics
Final-revised paper
Preprint