Articles | Volume 22, issue 6
https://doi.org/10.5194/acp-22-4237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Haoyu Jiang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
Chinese Academy of Science, Center for Excellence in Deep Earth
Science, Guangzhou, 510640, China
Yingyao He
School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
Yiqun Wang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
Sheng Li
Hunan Research Academy of Environmental sciences, Changsha, 410004,
China
Bin Jiang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
Luca Carena
Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
Xue Li
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Lihua Yang
School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
Tiangang Luan
School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
Davide Vione
Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
Chinese Academy of Science, Center for Excellence in Deep Earth
Science, Guangzhou, 510640, China
Related authors
No articles found.
Yiqun Wang and Sasho Gligorovski
Atmos. Chem. Phys., 25, 11757–11787, https://doi.org/10.5194/acp-25-11757-2025, https://doi.org/10.5194/acp-25-11757-2025, 2025
Short summary
Short summary
The sea surface microlayer (SML) is the ocean's "skin", exposed to solar radiation and atmospheric contact. It impacts air quality and climate through physical processes like gas transfer barriers and modulation of sea spray aerosol production. Chemically, it is a volatile organic compound source, driven by light irradiation and gaseous oxidant deposition. This review highlights advances in understanding the SML's role in ocean–atmosphere interactions and offers insights for future research.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping'an Peng
Atmos. Chem. Phys., 25, 11597–11610, https://doi.org/10.5194/acp-25-11597-2025, https://doi.org/10.5194/acp-25-11597-2025, 2025
Short summary
Short summary
This study investigated the evolution of biomass and water-soluble organic matter (WSOM) derived from coal combustion during an aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM. More pronounced alterations were observed during OH photooxidation than direct photolysis. Our results also demonstrate that atmospheric photooxidation may represent a significant source of black-carbon-like substances.
Junhong Huang, Lei Li, Xue Li, Zhengxu Huang, and Zhi Cheng
Atmos. Meas. Tech., 18, 2739–2749, https://doi.org/10.5194/amt-18-2739-2025, https://doi.org/10.5194/amt-18-2739-2025, 2025
Short summary
Short summary
We developed a sampling system that extends the transmission range of the five-stage lens to 10 µm. This innovative design reduces the beam incidence angle and narrows the width. Using polystyrene latex spheres, we validated the high transmission efficiency. Additionally, a standard dust test demonstrated consistency with the aerodynamic particle sizer. This study introduces a novel design framework that not only enhances transmission range and efficiency but also supports instrument miniaturization.
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024, https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Short summary
We report enhanced formation of nitrous acid (HONO) and NOx (NO + NO2) triggered by iron ions during photolysis of neonicotinoid insecticides at the air–water interface. This novel previously overlooked source of atmospheric HONO and NOx may be an important contribution to the global nitrogen cycle and affects atmospheric oxidizing capacity and climate change.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-598, https://doi.org/10.5194/egusphere-2022-598, 2022
Preprint archived
Short summary
Short summary
The particle size and chemical composition of bioaerosol were analyzed based on single particle aerosol mass spectrometer. Fungal aerosol of 10 μm was measured for the first time and the characteristic spectrum of bioaerosol was updated. The ion peak ratio method can distinguish bioaerosols from interferers by 97 %. The factors influencing the differentiation of bioaerosols are also discussed. Single particle mass spectrometry can be a new method for real-time identification of bioaerosols.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Brix Raphael Go, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary
Short summary
Biomass burning (BB) is a global phenomenon that releases large quantities of pollutants such as phenols and aromatic carbonyls into the atmosphere. These compounds can form secondary organic aerosols (SOAs) which play an important role in the Earth’s energy budget. In this work, we demonstrated that the direct irradiation of vanillin (VL) could generate aqueous SOA (aqSOA) such as oligomers. In the presence of nitrate, VL photo-oxidation can also form nitrated compounds.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Cited articles
Allen, H. C., Gragson, D., and Richmond, G.: Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions, J. Phys. Chem. B, 103, 660–666, 1999.
Altieri, K. E., Carlton, A. G., Lim, H.-J., Turpin, B. J., and Seitzinger,
S. P.: Evidence for oligomer formation in clouds: Reactions of isoprene
oxidation products, Environ. Sci. Technol., 40, 4956–4960,
https://doi.org/10.1021/es052170n, 2006.
Andreae, M. O. J. L.: Dimethylsulfoxide in marine and freshwaters, Limnol.
Oceanogr., 25, 1054–1063, 1980.
Arsene, C., Barnes, I., Becker, K. H., Schneider, W. F., Wallington, T. T.,
Mihalopoulos, N., and Patroescu-Klotz, I. V. J. E. S.: Formation of methane
sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl
sulfoxide, Environ. Sci. Technol., 36, 5155–5163, 2002.
Asher, E., Dacey, J. W., Ianson, D., Peña, A., and Tortell, P. D.:
Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore
waters of the Subarctic Pacific during summer, 2010–2011, J. Geophys. Res.-Oceans, 122, 3269–3286, 2017.
Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl sulfide and dimethyl
sulfoxide and their oxidation in the atmosphere, Chem. Rev., 106, 940–975,
https://doi.org/10.1021/cr020529+, 2006.
Benson, N. U., Essien, J. P., Asuquo, F. E., and Eritobor, A. L.: Occurrence
and distribution of polycyclic aromatic hydrocarbons in surface microlayer
and subsurface seawater of Lagos Lagoon, Nigeria, Environ. Monit. Assess.,
186, 5519–5529, 2014.
Berresheim, H. and Eisele, F.: Sulfur chemistry in the Antarctic Troposphere
Experiment: An overview of project SCATE, J. Geophys. Res.-Atmos., 103,
1619–1627, 1998.
Berresheim, H., Eisele, F., Tanner, D., McInnes, L., Ramsey-Bell, D., and
Covert, D.: Atmospheric sulfur chemistry and cloud condensation nuclei (CCN)
concentrations over the northeastern Pacific coast, J. Geophys. Res.-Atmos.,
98, 12701–12711, 1993.
Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H. C.,
Rosman, K., Dal Maso, M., Makela, J. M., Kulmala, M., and O'Dowd, C. D.:
Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland, J. Geophys. Res.-Atmos., 107, PAR 5-1–PAR 5-12,, https://doi.org/10.1029/2000jd000229, 2002.
Binning Jr., R. and Curtiss, L.: Compact contracted basis sets for third-row
atoms: Ga–Kr, J. Comput. Chem., 11, 1206–1216, 1990.
Blair, S. L., MacMillan, A. C., Drozd, G. T., Goldstein, A. H., Chu, R. K.,
Paša-Tolić, L., Shaw, J. B., Tolić, N., Lin, P., and Laskin, J.:
Molecular characterization of organosulfur compounds in biodiesel and diesel
fuel secondary organic aerosol, Environ. Sci. Technol., 51, 119–127, 2017.
Bork, N., Elm, J., Olenius, T., and Vehkamäki, H.: Methane sulfonic acid-enhanced formation of molecular clusters of sulfuric acid and dimethyl amine, Atmos. Chem. Phys., 14, 12023–12030, https://doi.org/10.5194/acp-14-12023-2014, 2014.
Brigante, M., Charbouillot, T., Vione, D., and Mailhot, G.: Photochemistry
of 1-nitronaphthalene: A potential source of singlet oxygen and radical
species in atmospheric waters, J. Phys. Chem. A, 114, 2830–2836, 2010.
Brimblecombe, P. and Shooter, D.: Photo-oxidation of dimethylsulphide in
aqueous solution, Mar. Chem., 19, 343–353, 1986.
Brüggemann, M., Hayeck, N., and George, C.: Interfacial photochemistry
at the ocean surface is a global source of organic vapors and aerosols, Nat.
Commun., 9, 2101, https://doi.org/10.1038/s41467-018-04528-7, 2018.
Bruggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y.,
Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.:
Organosulfates in Ambient Aerosol: State of Knowledge and Future Research
Directions on Formation, Abundance, Fate, and Importance, Environ. Sci.
Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751, 2020.
Cai, D., Wang, X., Chen, J., and Li, X.: Molecular Characterization of
Organosulfates in Highly Polluted Atmosphere Using Ultra-High-Resolution
Mass Spectrometry, J. Geophys. Res.-Atmos., 125, e2019JD032253, https://doi.org/10.1029/2019jd032253, 2020.
Chen, H., Varner, M. E., Gerber, R. B., and Finlayson-Pitts, B. J.:
Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New
Particles in Air, J. Phys. Chem. B, 120, 1526–1536, https://doi.org/10.1021/acs.jpcb.5b07433, 2016.
Chen, J., Ehrenhauser, F. S., Valsaraj, K. T., and Wornat, M. J.: Uptake and
UV-photooxidation of gas-phase PAHs on the surface of atmospheric water
films. 1. Naphthalene, J. Phys. Chem. A, 110, 9161–9168, 2006.
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, 2018.
Cincinelli, A., Stortini, A. M., Perugini, M., Checchini, L., and Lepri, L.:
Organic pollutants in sea-surface microlayer and aerosol in the coastal
environment of Leghorn – (Tyrrhenian Sea), Mar. Chem., 76, 77–98, https://doi.org/10.1016/s0304-4203(01)00049-4, 2001.
Dall'Osto, M., Ceburnis, D., Monahan, C., Worsnop, D. R., Bialek, J.,
Kulmala, M., Kurten, T., Ehn, M., Wenger, J., Sodeau, J., Healy, R., and
O'Dowd, C.: Nitrogenated and aliphatic organic vapors as possible drivers
for marine secondary organic aerosol growth, J. Geophys. Res.-Atmos., 117, D12311, https://doi.org/10.1029/2012jd017522, 2012.
Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D.
R.: Mass accommodation and chemical reactions at gas-liquid interfaces,
Chem. Rev., 106, 1323–1354, 2006.
Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and
Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from
methanesulfonic acid, amines, and water via experiments and ab initio
calculations, P. Natl. Acad. Sci. USA, 109, 18719–18724, 2012.
Decesari, S., Finessi, E., Rinaldi, M., Paglione, M., Fuzzi, S., Stephanou,
E., Tziaras, T., Spyros, A., Ceburnis, D., and O'Dowd, C.: Primary and
secondary marine organic aerosols over the North Atlantic Ocean during the
MAP experiment, J. Geophys. Res.-Atmos., 116, D22210, https://doi.org/10.1029/2011JD016204, 2011.
Deng, H., Liu, J., Wang, Y., Song, W., Wang, X., Li, X., Vione, D., and
Gligorovski, S.: Effect of Inorganic Salts on N-Containing Organic Compounds
Formed by Heterogeneous Reaction of NO2 with Oleic Acid, Environ. Sci.
Technol., 55, 7831–7840, https://doi.org/10.1021/acs.est.1c01043, 2021.
Donaldson, D., Kahan, T., Kwamena, N., Handley, S., and Barbier, C.:
Atmospheric chemistry of urban surface films, in: Atmospheric Aerosols
Characterization, Chemistry, Modeling, and Climate, ACS Publications, 79–89, https://doi.org/10.1021/bk-2009-1005.ch006, 2009.
Falbe-Hansen, H., Sørensen, S., Jensen, N., Pedersen, T., and Hjorth, J.:
Atmospheric gas-phase reactions of dimethylsulphoxide and dimethylsulphone
with OH and NO3 radicals, Cl atoms and ozone, Atmos. Environ., 34,
1543–1551, 2000.
Gaston, C. J., Pratt, K. A., Qin, X., and Prather, K. A.: Real-time
detection and mixing state of methanesulfonate in single particles at an
inland urban location during a phytoplankton bloom, Environ. Sci. Technol.,
44, 1566–1572, 2010.
González-García, N., González-Lafont, À., and Lluch, J. M.:
Variational transition-state theory study of the dimethyl sulfoxide (DMSO)
and OH reaction, J. Phys. Chem. A, 110, 798–808, 2006.
González-Gaya, B., Fernández-Pinos, M.-C., Morales, L.,
Méjanelle, L., Abad, E., Piña, B., Duarte, C. M., Jiménez, B.,
and Dachs, J.: High atmosphere–ocean exchange of semivolatile aromatic
hydrocarbons, Nat. Geosci., 9, 438–442, https://doi.org/10.1038/ngeo2714, 2016.
González-Gaya, B., Martínez-Varela, A., Vila-Costa, M., Casal, P.,
Cerro-Gálvez, E., Berrojalbiz, N., Lundin, D., Vidal, M., Mompeán,
C., and Bode, A.: Biodegradation as an important sink of aromatic
hydrocarbons in the oceans, Nat. Geosci., 12, 119–125, 2019.
Grossman, J. N., Stern, A. P., Kirich, M. L., and Kahan, T. F.: Anthracene
and pyrene photolysis kinetics in aqueous, organic, and mixed
aqueous-organic phases, Atmos. Environ., 128, 158–164, 2016.
Guitart, C., Garcia-Flor, N., Bayona, J. M., and Albaiges, J.: Occurrence
and fate of polycyclic aromatic hydrocarbons in the coastal surface
microlayer, Mar. Pollut. Bull., 54, 186–194, https://doi.org/10.1016/j.marpolbul.2006.10.008, 2007.
Hardy, J. T., Crecelius, E. A., Antrim, L. D., Kiesser, S. L., Broadhurst,
V. L., Boehm, P. D., Steinhauer, W. G., and Coogan, T. H.: Aquatic surface
microlayer contamination in chesapeake bay, Mar. Chem., 28, 333–351, 1990.
Harvey, G. R. and Lang, R. F.: Dimethylsulfoxide and dimethylsulfone in the
marine atmosphere, Geophys. Res. Lett., 13, 49–51, 1986.
Hatton, A., Malin, G., Turner, S., and Liss, P.: DMSO, A Significant
Compound in the Biogeochemical Cycle of DMS., in: Biological and
Environmental Chemistry of DMSP and Related Sulfonium Compounds, Springer,
405–412, ISBN 978-1-4613-8024-5, 1996.
Hoffmann, E. H., Tilgner, A., Schrodner, R., Brauer, P., Wolke, R., and
Herrmann, H.: An advanced modeling study on the impacts and atmospheric
implications of multiphase dimethyl sulfide chemistry, P. Natl. Acad.
Sci. USA, 113, 11776–11781, https://doi.org/10.1073/pnas.1606320113, 2016.
Hopkins, R. J., Desyaterik, Y., Tivanski, A. V., Zaveri, R. A., Berkowitz,
C. M., Tyliszczak, T., Gilles, M. K., and Laskin, A.: Chemical speciation of
sulfur in marine cloud droplets and particles: Analysis of individual
particles from the marine boundary layer over the California current, J.
Geophys. Res.-Atmos., 113, D04209, https://doi.org/10.1029/2007JD008954, 2008.
Huang, L., Liu, T., and Grassian, V. H.: Radical-Initiated Formation of
Aromatic Organosulfates and Sulfonates in the Aqueous Phase, Environ. Sci.
Technol., 54, 11857–11864, https://doi.org/10.1021/acs.est.0c05644, 2020.
Jiang, B., Kuang, B. Y., Liang, Y., Zhang, J., Huang, X. H. H., Xu, C., Yu,
J. Z., and Shi, Q.: Molecular composition of urban organic aerosols on clear
and hazy days in Beijing: a comparative study using FT-ICR MS, Environ.
Chem., 13, 888–901, https://doi.org/10.1071/en15230, 2016.
Jiang, H., Carena, L., He, Y., Wang, Y., Zhou, W., Yang, L., Luan, T., Li,
X., Brigante, M., Vione, D., and Gligorovski, S.: Photosensitized
Degradation of DMSO Initiated by PAHs at the Air-Water Interface, as an
Alternative Source of Organic Sulfur Compounds to the Atmosphere, J.
Geophys. Res.-Atmos., 126, e2021JD035346, https://doi.org/10.1029/2021JD035346, 2021.
Kamens, R. M., Zhang, H., Chen, E. H., Zhou, Y., Parikh, H. M., Wilson, R.
L., Galloway, K. E., and Rosen, E. P.: Secondary organic aerosol formation
from toluene in an atmospheric hydrocarbon mixture: Water and particle seed
effects, Atmos. Environ., 45, 2324–2334, https://doi.org/10.1016/j.atmosenv.2010.11.007,
2011.
Karl, M., Gross, A., Leck, C., and Pirjola, L.: Intercomparison of
dimethylsulfide oxidation mechanisms for the marine boundary layer: Gaseous
and particulate sulfur constituents, J. Geophys. Res.-Atmos., 112, D15304, https://doi.org/10.1029/2006jd007914, 2007.
Kourtchev, I., O'Connor, I. P., Giorio, C., Fuller, S. J., Kristensen, K.,
Maenhaut, W., Wenger, J. C., Sodeau, J. R., Glasius, M., and Kalberer, M.:
Effects of anthropogenic emissions on the molecular composition of urban
organic aerosols: An ultrahigh resolution mass spectrometry study, Atmos.
Environ., 89, 525–532, https://doi.org/10.1016/j.atmosenv.2014.02.051, 2014.
Kroll, J. A., Frandsen, B. N., Kjaergaard, H. G., and Vaida, V.: Atmospheric
hydroxyl radical source: Reaction of triplet SO2 and water, J. Phys. Chem. A, 122, 4465–4469, 2018.
Kukui, A., Borissenko, D., Laverdet, G., and Le Bras, G.: Gas-phase
reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid
using turbulent flow reactor and chemical ionization mass spectrometry, J.
Phys. Chem. A, 107, 5732–5742, 2003.
Kundu, S., Quraishi, T. A., Yu, G., Suarez, C., Keutsch, F. N., and Stone, E. A.: Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan, Atmos. Chem. Phys., 13, 4865–4875, https://doi.org/10.5194/acp-13-4865-2013, 2013.
Lammel, G.: Polycyclic aromatic compounds in the atmosphere – a review
identifying research needs, Polycycl. Aromat. Comp., 35, 316–329, 2015.
Lee, P. and De Mora, S.: DMSP, DMS and DMSO concentrations and temporal
trends in marine surface waters at Leigh, New Zealand, in: Biological and
Environmental Chemistry of DMSP and Related Sulfonium Compounds, Springer,
391–404, ISBN 978-0-306-45306-9, 1996.
Lee, P. A., de Mora, S. J., and Levasseur, M.: A review of dimethylsulfoxide
in aquatic environments, Atmos.-Ocean, 37, 439–456, https://doi.org/10.1080/07055900.1999.9649635, 1999.
Legrand, M., Sciare, J., Jourdain, B., and Genthon, C.: Subdaily variations
of atmospheric dimethylsulfide, dimethylsulfoxide, methanesulfonate, and
non-sea-salt sulfate aerosols in the atmospheric boundary layer at Dumont
d'Urville (coastal Antarctica) during summer, J. Geophys. Res.-Atmos., 106,
14409–14422, 2001.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, J., Li, F., and Liu, Q.: PAHs behavior in surface water and groundwater
of the Yellow River estuary: evidence from isotopes and hydrochemistry,
Chemosphere, 178, 143–153, 2017.
Librando, V., Tringali, G., Hjorth, J., and Coluccia, S.: OH-initiated
oxidation of DMS/DMSO: reaction products at high NOx levels, Environ.
Pollut., 127, 403–410, 2004.
Librando, V., Bracchitta, G., de Guidi, G., Minniti, Z., Perrini, G., and
Catalfo, A.: Photodegradation of anthracene and benzo [a] anthracene in
polar and apolar media: new pathways of photodegradation, Polycycl. Aromat.
Comp., 34, 263–279, 2014.
Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition
of HULIS in the Pearl River Delta Region, China: results inferred from
positive and negative electrospray high resolution mass spectrometric data,
Environ. Sci. Technol., 46, 7454–7462, https://doi.org/10.1021/es300285d, 2012.
Lohmann, R., Gioia, R., Jones, K. C., Nizzetto, L., Temme, C., Xie, Z.,
Schulz-Bull, D., Hand, I., Morgan, E., and Jantunen, L. J. E. S.:
Organochlorine pesticides and PAHs in the surface water and atmosphere of
the North Atlantic and Arctic Ocean, Environ. Sci. Technol., 43, 5633–5639,
2009.
Ma, Y., Xie, Z., Yang, H., Möller, A., Halsall, C., Cai, M., Sturm, R.,
and Ebinghaus, R.: Deposition of polycyclic aromatic hydrocarbons in the
North Pacific and the Arctic, J. Geophys. Res.-Atmos., 118, 5822–5829, 2013.
Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal
variations of particulate organosulfates in urban Shanghai, China, Atmos.
Environ., 85, 152–160, https://doi.org/10.1016/j.atmosenv.2013.12.017, 2014.
Martins-Costa, M. T., Anglada, J. M., Francisco, J. S., and Ruiz-Loìpez, M.
F.: Photochemistry of SO2 at the air–water interface: a source of OH and HOSO radicals, J. Am. Chem. Soc., 140, 12341–12344, 2018.
McLean, A. and Chandler, G.: Contracted Gaussian basis sets for molecular
calculations. I. Second row atoms, Z=11–18, J. Chem. Phys., 72,
5639–5648, 1980.
Mekic, M., Zeng, J., Jiang, B., Li, X., Lazarou, Y. G., Brigante, M.,
Herrmann, H., and Gligorovski, S.: Formation of Toxic Unsaturated
Multifunctional and Organosulfur Compounds From the Photosensitized
Processing of Fluorene and DMSO at the Air-Water Interface, J. Geophys.
Res.-Atmos., 125, https://doi.org/10.1029/2019jd031839, 2020a.
Mekic, M., Zeng, J., Zhou, W., Loisel, G., Jin, B., Li, X., Vione, D., and
Gligorovski, S.: Ionic Strength Effect on Photochemistry of Fluorene and
Dimethylsulfoxide at the Air–Sea Interface: Alternative Formation Pathway
of Organic Sulfur Compounds in a Marine Atmosphere ACS Earth Space Chem., 4,
1029–1038, https://doi.org/10.1021/acsearthspacechem.0c00059, 2020b.
Monge, M. E., George, C., D'Anna, B., Doussin, J.-F., Jammoul, A., Wang, J.,
Eyglunent, G., Solignac, G., Daele, V., and Mellouki, A.: Ozone formation
from illuminated titanium dioxide surfaces, J. Am. Chem. Soc., 132,
8234–8235, 2010.
Ning, A., Zhang, H., Zhang, X., Li, Z., Zhang, Y., Xu, Y., and Ge, M.: A
molecular-scale study on the role of methanesulfinic acid in marine new
particle formation, Atmos. Environ., 227, 117378, https://doi.org/10.1016/j.atmosenv.2020.117378, 2020.
Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular chemistry of
organic aerosols through the application of high resolution mass
spectrometry, Phys. Chem. Chem. Phys., 13, 3612–3629, 2011.
Oppenheimer, C., Francis, P., Burton, M., Maciejewski, A., and Boardman, L.:
Remote measurement of volcanic gases by Fourier transform infrared
spectroscopy, Appl. Phys. B-Lasers O., 67, 505–515, https://doi.org/10.1007/s003400050536, 1998.
Otto, S., Streibel, T., Erdmann, S., Klingbeil, S., Schulz-Bull, D., and
Zimmermann, R.: Pyrolysis–gas chromatography–mass spectrometry with
electron-ionization or resonance-enhanced-multi-photon-ionization for
characterization of polycyclic aromatic hydrocarbons in the Baltic Sea, Mar.
Pollut. Bull., 99, 35–42, 2015.
Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J.,
Donaldson, D. J., and George, C.: Organosulfate Formation through the
Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and
Long-Chain Alkenes, Angew. Chem. Int. Ed., 55, 10336–10339, 2016.
Pérez-Carrera, E., León, V. M. L., Parra, A. G., and
González-Mazo, E.: Simultaneous determination of pesticides, polycyclic
aromatic hydrocarbons and polychlorinated biphenyls in seawater and
interstitial marine water samples, using stir bar sorptive
extraction–thermal desorption–gas chromatography–mass spectrometry, J.
Chromatogr. A, 1170, 82–90, 2007.
Perraud, V., Horne, J. R., Martinez, A. S., Kalinowski, J., Meinardi, S.,
Dawson, M. L., Wingen, L. M., Dabdub, D., Blake, D. R., Gerber, R. B., and
Finlayson-Pitts, B. J.: The future of airborne sulfur-containing particles
in the absence of fossil fuel sulfur dioxide emissions, P. Natl. Acad. Sci. USA, 112, 13514–13519, https://doi.org/10.1073/pnas.1510743112, 2015.
Richards, S., Rudd, J., and Kelly, C.: Organic volatile sulfur in lakes
ranging in sulfate and dissolved salt concentration over five orders of
magnitude, Limnol. Oceanogr., 39, 562–572, 1994.
Richards-Henderson, N. K., Goldstein, A. H., and Wilson, K. R.: Sulfur dioxide accelerates the heterogeneous oxidation rate of
organic aerosol by hydroxyl radicals, Environ. Sci. Technol. Lett., 50,
3554–3561, 2016.
Ridgeway, R. G., Thornton, D. C., and Bandy, A. R.: Determination of trace
aqueous dimethylsulfoxide concentrations by isotope dilution gas
chromatography/mass spectrometry: Application to rain and sea water, J.
Atmos. Chem., 14, 53–60, 1992.
Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E.
A., Villenave, E., and Surratt, J. D.: Evidence for an unrecognized
secondary anthropogenic source of organosulfates and sulfonates: gas-phase
oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate
aerosol, Environ. Sci. Technol., 49, 6654–6664, https://doi.org/10.1021/acs.est.5b00836,
2015.
Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, 2016.
Rosati, B., Christiansen, S., de Jonge, R. W., Roldin, P., Jensen, M. M.,
Wang, K., Moosakutty, S. P., Thomsen, D., Salomonsen, C., Hyttinen, N., Elm,
J., Feilberg, A., Glasius, M., and Bilde, M.: New Particle Formation and
Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals, ACS Earth Space
Chem., 5, 801–811, https://doi.org/10.1021/acsearthspacechem.0c00333, 2021.
Schobesberger, S., Junninen, H., Bianchi, F., Lonn, G., Ehn, M., Lehtipalo,
K., Dommen, J., Ehrhart, S., Ortega, I. K., Franchin, A., Nieminen, T.,
Riccobono, F., Hutterli, M., Duplissy, J., Almeida, J., Amorim, A.,
Breitenlechner, M., Downard, A. J., Dunne, E. M., Flagan, R. C., Kajos, M.,
Keskinen, H., Kirkby, J., Kupc, A., Kurten, A., Kurten, T., Laaksonen, A.,
Mathot, S., Onnela, A., Praplan, A. P., Rondo, L., Santos, F. D.,
Schallhart, S., Schnitzhofer, R., Sipila, M., Tome, A., Tsagkogeorgas, G.,
Vehkamaki, H., Wimmer, D., Baltensperger, U., Carslaw, K. S., Curtius, J.,
Hansel, A., Petaja, T., Kulmala, M., Donahue, N. M., and Worsnop, D. R.:
Molecular understanding of atmospheric particle formation from sulfuric acid
and large oxidized organic molecules, P. Natl. Acad. Sci. USA, 110,
17223–17228, https://doi.org/10.1073/pnas.1306973110, 2013.
Seidel, M., Manecki, M., Herlemann, D. P., Deutsch, B., Schulz-Bull, D.,
Jürgens, K., and Dittmar, T.: Composition and transformation of
dissolved organic matter in the Baltic Sea, Front. Earth Sci., 5, 31, https://doi.org/10.3389/feart.2017.00031, 2017.
Shang, J., Passananti, M., Dupart, Y., Ciuraru, R., Tinel, L., Rossignol, S.
p., Perrier, S. B., Zhu, T., and George, C.: SO2 Uptake on oleic acid: A new formation pathway of organosulfur compounds in the atmosphere, Environ. Sci. Technol. Lett., 3, 67–72, 2016.
Smith, S. J., Pitcher, H., and Wigley, T. M. L.: Global and regional
anthropogenic sulfur dioxide emissions, Global Planet. Change, 29, 99–119, https://doi.org/10.1016/s0921-8181(00)00057-6, 2001.
Staudt, S., Kundu, S., Lehmler, H.-J., He, X., Cui, T., Lin, Y.-H.,
Kristensen, K., Glasius, M., Zhang, X., Weber, R. J., Surratt, J. D., and
Stone, E. A.: Aromatic organosulfates in atmospheric aerosols: Synthesis,
characterization, and abundance, Atmos. Environ., 94, 366–373, https://doi.org/10.1016/j.atmosenv.2014.05.049, 2014.
Stortini, A., Martellini, T., Del Bubba, M., Lepri, L., Capodaglio, G., and
Cincinelli, A.: n-Alkanes, PAHs and surfactants in the sea surface
microlayer and sea water samples of the Gerlache Inlet sea (Antarctica),
Microchem. J., 92, 37–43, 2009.
Styler, S. A., Loiseaux, M.-E., and Donaldson, D. J.: Substrate effects in the photoenhanced ozonation of pyrene, Atmos. Chem. Phys., 11, 1243–1253, https://doi.org/10.5194/acp-11-1243-2011, 2011.
Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L.,
Nizkorodov, S. A., Laskin, J., Laskin, A., and Yang, X.: Molecular
characterization of organosulfates in organic aerosols from Shanghai and Los
Angeles urban areas by nanospray-desorption electrospray ionization
high-resolution mass spectrometry, Environ. Sci. Technol., 48, 10993–11001,
2014.
Urbanski, S., Stickel, R., and Wine, P.: Mechanistic and kinetic study of
the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide, J. Phys.
Chem. A, 102, 10522–10529, 1998.
Vácha, R., Jungwirth, P., Chen, J., and Valsaraj, K.: Adsorption of
polycyclic aromatic hydrocarbons at the air–water interface: Molecular
dynamics simulations and experimental atmospheric observations, Phys. Chem. Chem. Phys., 8, 4461–4467, 2006.
Valavanidis, A., Vlachogianni, T., Triantafillaki, S., Dassenakis, M.,
Androutsos, F., and Scoullos, M.: Polycyclic aromatic hydrocarbons in
surface seawater and in indigenous mussels (Mytilus galloprovincialis) from
coastal areas of the Saronikos Gulf (Greece), Estuar. Coast. Shelf Sci., 79,
733–739, 2008.
von Sonntag, C., Dowideit, P., Fang, X., Mertens, R., Pan, X., Schuchmann, M. N., and Schuchmann, H.-P.: The fate of peroxyl radicals in aqueous solution, Water Sci. Technol., 35, 9–15, 1997.
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang,
Q., Philip, S., and Xie, Y.: Enhanced sulfate formation during China's
severe winter haze episode in January 2013 missing from current models,
J. Geophys. Res.-Atmos., 119, 10425–10440, https://doi.org/10.1002/2013jd021426, 2014.
Wang, Y., Mekic, M., Li, P., Deng, H., Liu, S., Jiang, B., Jin, B., Vione,
D., and Gligorovski, S.: Ionic Strength Effect Triggers Brown Carbon
Formation through Heterogeneous Ozone Processing of Ortho-Vanillin, Environ.
Sci. Technol., 55, 4553–4564, https://doi.org/10.1021/acs.est.1c00874, 2021.
Weigend, F.: Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys., 8, 1057–1065, 2006.
Weigend, F. and Ahlrichs, R.: Balanced basis sets of split valence, triple
zeta valence and quadruple zeta valence quality for H to Rn: Design and
assessment of accuracy, Phys. Chem. Chem. Phys., 7, 3297–3305, 2005.
Wilkinson, F., Helman, W. P., and Ross, A. B.: Rate constants for the decay
and reactions of the lowest electronically excited singlet state of
molecular oxygen in solution. An expanded and revised compilation, J. Phys.
Chem. Ref. Data, 24, 663–677, 1995.
Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin,
P.: Structural characterization of organic aerosol using Fourier transform
ion cyclotron resonance mass spectrometry: aromaticity equivalent approach,
Rapid Commun. Mass Spectrom., 28, 2445–2454, 2014.
Zhang, L., Kuniyoshi, I., Hirai, M., and Shoda, M.: Oxidation of dimethyl
sulfide byPseudomonas acidovorans DMR-11 isolated from peat biofilter,
Biotechnol. Lett, 13, 223–228, 1991.
Zhang, M., Gao, W., Yan, J., Wu, Y., Marandino, C. A., Park, K., Chen, L.,
Lin, Q., Tan, G., and Pan, M.: An integrated sampler for shipboard underway
measurement of dimethyl sulfide in surface seawater and air, Atmos.
Environ., 209, 86–91, 2019.
Zhang, S. H., Yang, G. P., Zhang, H. H., and Yang, J.: Spatial variation of
biogenic sulfur in the south Yellow Sea and the East China Sea during summer
and its contribution to atmospheric sulfate aerosol, Sci. Total Environ.,
488–489, 157–167, https://doi.org/10.1016/j.scitotenv.2014.04.074, 2014.
Zhang, Y., Wang, Y., Gray, B. A., Gu, D., Mauldin, L., Cantrell, C., and
Bandy, A.: Surface and free tropospheric sources of methanesulfonic acid
over the tropical Pacific Ocean, Geophys. Res. Lett., 41, 5239–5245, https://doi.org/10.1002/2014gl060934, 2014.
Zhao, H., Jiang, X., and Du, L.: Contribution of methane sulfonic acid to
new particle formation in the atmosphere, Chemosphere, 174, 689–699, https://doi.org/10.1016/j.chemosphere.2017.02.040, 2017.
Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc., 120, 215–241, 2008.
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci.
USA, 116, 11658–11663, https://doi.org/10.1073/pnas.1902517116, 2019.
Zhu, M., Jiang, B., Li, S., Yu, Q., Yu, X., Zhang, Y., Bi, X., Yu, J.,
George, C., and Yu, Z.: Organosulfur Compounds Formed from Heterogeneous
Reaction between SO2 and Particulate-Bound Unsaturated Fatty Acids in
Ambient Air, Environ. Sci. Technol. Lett., 6, 318–322, 2019.
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate...
Altmetrics
Final-revised paper
Preprint