Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter brown carbon over six of China's megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network
Diwei Wang
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Qian Zhang
Key Laboratory of Northwest Resource, Environment and Ecology, MOE,
Xi'an University of Architecture and Technology, Xi'an 710055, China
Yali Lei
Key Lab of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University,
Shanghai 200241, China
Tian Zhang
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Shasha Huang
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Jian Sun
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Hongmei Xu
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an 710049, China
Junji Cao
Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Related authors
No articles found.
Liyan Liu, Hongmei Xu, Mengyun Yang, Tafeng Hu, Abdullah Akhtar, Jian Sun, and Zhenxing Shen
Atmos. Chem. Phys., 25, 14371–14385, https://doi.org/10.5194/acp-25-14371-2025, https://doi.org/10.5194/acp-25-14371-2025, 2025
Short summary
Short summary
Atmospheric microplastics and plasticizers can disperse into the ecosystem and directly enter the human body, causing multiple adverse effects. The fingerprint markers of microplastic sources are very limited. We examine the concentration, size distribution, eco-health risks, and production of reactive oxygen species of microplastics from five typical sources, especially neglected rural sources. Our results could provide a scientific foundation for developing efficient management strategies.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Short summary
Due to their lower diffusion capacities and higher conversion capacities, urban areas in Xi’an experienced severe ozone pollution in the summer. In this study, a campaign of comprehensive field observations and VOC grid sampling was conducted in Xi’an from 20 June to 20 July 2019. We found that Xi'an has a strong local emission source of VOCs, and vehicle exhaust was the primary VOC source. In addition, alkenes, aromatics, and oxygenated VOCs played a dominant role in secondary transformations.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Cited articles
Bao, M., Zhang, Y. L., Cao, F., Lin, Y. C., Hong, Y., Fan, M., Zhang, Y.,
Yang, X., and Xie, F.: Light absorption and source apportionment of water
soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China,
Environ. Res., 206, 112554, https://doi.org/10.1016/j.envres.2021.112554,
2022.
Borlaza, L. J. S., Weber, S., Jaffrezo, J.-L., Houdier, S., Slama, R., Rieux, C., Albinet, A., Micallef, S., Trébluchon, C., and Uzu, G.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM10 oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis, Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, 2021a.
Borlaza, L. J. S., Weber, S., Uzu, G., Jacob, V., Cañete, T., Micallef, S., Trébuchon, C., Slama, R., Favez, O., and Jaffrezo, J.-L.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: Source apportionment at three neighbouring sites, Atmos. Chem. Phys., 21, 5415–5437, https://doi.org/10.5194/acp-21-5415-2021, 2021b.
Cao, J. J., Lee, S. C., Ho, K. F., Zou, S. C., Fung, K., Li, Y., Watson, J.
G., and Chow, J. C.: Spatial and seasonal variations of atmospheric organic
carbon and elemental carbon in Pearl River Delta Region, China, Atmos.
Environ., 38, 4447–4456, https://doi.org/10.1016/j.atmosenv.2004.05.016,
2004.
Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z.
X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility
impairment in Xi'an, China, Atmos. Environ., 59, 559–566,
https://doi.org/10.1016/j.atmosenv.2012.05.036, 2012.
Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P.: Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal, Atmos. Chem. Phys., 21, 13187–13205, https://doi.org/10.5194/acp-21-13187-2021, 2021.
Chen, D., Zhao, Y., Lyu, R., Wu, R., Dai, L., Zhao, Y., Chen, F., Zhang, J.,
Yu, H., and Guan, M.: Seasonal and spatial variations of optical properties
of light absorbing carbon and its influencing factors in a typical polluted
city in Yangtze River Delta, China, Atmos. Environ., 199, 45–54,
https://doi.org/10.1016/j.atmosenv.2018.11.022, 2019.
Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M.,
Zhang, Y., and Chen, M.: Seasonal light absorption properties of
water-soluble brown carbon in atmospheric fine particles in Nanjing, China,
Atmos. Environ., 187, 230–240,
https://doi.org/10.1016/j.atmosenv.2018.06.002, 2018.
Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng,
M., and Weber, R. J.: The characteristics of brown carbon aerosol during
winter in Beijing, Atmos. Environ., 127, 355–364,
https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
Cheng, Y., He, K. B., Engling, G., Weber, R., Liu, J. M., Du, Z. Y., and
Dong, S. P.: Brown and black carbon in Beijing aerosol: Implications for the
effects of brown coating on light absorption by black carbon, Sci. Total.
Environ., 599–600, 1047–1055,
https://doi.org/10.1016/j.scitotenv.2017.05.061, 2017.
Cheng, Y., Cao, X. B., Liu, J. M., Yu, Q. Q., Wang, P., Yan, C. Q., Du, Z.
Y., Liang, L. L., Zhang, Q., and He, K. B.: Primary nature of brown carbon
absorption in a frigid atmosphere with strong haze chemistry, Environ. Res.,
204, 112324, https://doi.org/10.1016/j.envres.2021.112324, 2022.
Chung, C. E., Kim, S.-W., Lee, M., Yoon, S.-C., and Lee, S.: Carbonaceous aerosol AAE inferred from in-situ aerosol measurements at the Gosan ABC super site, and the implications for brown carbon aerosol, Atmos. Chem. Phys., 12, 6173–6184, https://doi.org/10.5194/acp-12-6173-2012, 2012.
Coury, C. and Dillner, A. M.: A method to quantify organic functional groups
and inorganic compounds in ambient aerosols using attenuated total
reflectance FTIR spectroscopy and multivariate chemometric techniques,
Atmos. Environ., 42, 5923–5932,
https://doi.org/10.1016/j.atmosenv.2008.03.026, 2008.
Day, D. A., Liu, S., Russell, L. M., and Ziemann, P. J.: Organonitrate group
concentrations in submicron particles with high nitrate and organic
fractions in coastal southern California, Atmos. Environ., 44, 1970–1979,
https://doi.org/10.1016/j.atmosenv.2010.02.045, 2010.
Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett,
J. L.: Speciation of “brown” carbon in cloud water impacted by
agricultural biomass burning in eastern China, J. Geophys. Res.-Atmos., 118,
7389–7399, https://doi.org/10.1002/jgrd.50561, 2013.
Devi, J. J., Bergin, M. H., McKenzie, M., Schauer, J. J., and Weber, R. J.:
Contribution of particulate brown carbon to light absorption in the rural
and urban Southeast US, Atmos. Environ., 136, 95–104,
https://doi.org/10.1016/j.atmosenv.2016.04.011, 2016.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M.,
and Weber, R.: A yearlong study of water-soluble organic carbon in Beijing
II: Light absorption properties, Atmos. Environ., 89, 235–241,
https://doi.org/10.1016/j.atmosenv.2014.02.022, 2014.
Duarte, R. M. B. O., Pio, C. A., and Duarte, A. C.: Spectroscopic study of
the water-soluble organic matter isolated from atmospheric aerosols
collected under different atmospheric conditions, Anal. Chim. Acta, 530,
7–14, https://doi.org/10.1016/j.aca.2004.08.049, 2005.
Duarte, R. M. B. O., Santos, E. B. H., Pio, C. A., and Duarte, A. C.:
Comparison of structural features of water-soluble organic matter from
atmospheric aerosols with those of aquatic humic substances, Atmos.
Environ., 41, 8100–8113, https://doi.org/10.1016/j.atmosenv.2007.06.034,
2007.
Elangasinghe, M. A., Singhal, N., Dirks, K. N., and Salmond, J. A.:
Development of an ANN–based air pollution forecasting system with explicit
knowledge through sensitivity analysis, Atmos. Pollut. Res., 5, 696–708,
https://doi.org/10.5094/APR.2014.079, 2014.
Fan, X., Wei, S., Zhu, M., Song, J., and Peng, P.: Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels, Atmos. Chem. Phys., 16, 13321–13340, https://doi.org/10.5194/acp-16-13321-2016, 2016.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C.,
Rinaldi, M., Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P.,
Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S., and Facchini, M.
C.: Direct observation of aqueous secondary organic aerosol from
biomass-burning emissions, P. Natl. Acad. Sci. USA., 113, 10013–10018,
https://doi.org/10.1073/pnas.1602212113, 2016.
Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu,
C., Dai, W., Wang, K., Lin, C., Ni, H., Corbin, J. C., Wu, Y., Zhang, R.,
Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.: Brown Carbon Aerosol in
Urban Xi'an, Northwest China: The composition and light absorption
properties, Environ. Sci. Technol., 52, 6825–6833,
https://doi.org/10.1021/acs.est.8b02386, 2018.
Huang, X. H. H., Bian, Q. J., Louie, P. K. K., and Yu, J. Z.: Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong, Atmos. Chem. Phys., 14, 9279–9293, https://doi.org/10.5194/acp-14-9279-2014, 2014.
Huo, Y., Li, M., Jiang, M., and Qi, W.: Light absorption properties of HULIS
in primary particulate matter produced by crop straw combustion under
different moisture contents and stacking modes, Atmos. Environ., 191,
490–499, https://doi.org/10.1016/j.atmosenv.2018.08.038, 2018.
Jo, D. S., Park, R. J., Lee, S., Kim, S.-W., and Zhang, X.: A global simulation of brown carbon: implications for photochemistry and direct radiative effect, Atmos. Chem. Phys., 16, 3413–3432, https://doi.org/10.5194/acp-16-3413-2016, 2016.
Kim, H., Kim, J. Y., Jin, H. C., Lee, J. Y., and Lee, S. P.: Seasonal
variations in the light-absorbing properties of water-soluble and insoluble
organic aerosols in Seoul, Korea, Atmos. Environ., 129, 234–242,
https://doi.org/10.1016/j.atmosenv.2016.01.042, 2016.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the
spectral dependence of light absorption by aerosols is affected by organic
carbon, J. Geophys. Res.-Atmos., 109, D21208,
https://doi.org/10.1029/2004JD004999, 2004.
Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D.
S., and Gustafsson, Ö.: Water-soluble organic carbon aerosols during a
full New Delhi winter: Isotope-based source apportionment and optical
properties, J. Geophys. Res.-Atmos., 119, 3476–3485,
https://doi.org/10.1002/2013JD020041, 2014.
Kirillova, E. N., Marinoni, A., Bonasoni, P., Vuillermoz, E., Facchini, M.
C., Fuzzi, S., and Decesari, S.: Light absorption properties of brown carbon
in the high Himalayas, J. Geophys. Res.-Atmos., 121, 9621–9639,
https://doi.org/10.1002/2016JD025030, 2016.
Kristensen, T. B., Du, L., Nguyen, Q. T., Nøjgaard, J. K., Koch, C. B.,
Nielsen, O. F., Hallar, A. G., Lowenthal, D. H., Nekat, B., Pinxteren, D.
V., Herrmann, H., Glasius, M., Kjaergaard, H. G., and Bilde, M.: Chemical
properties of HULIS from three different environments, J. Atmos. Chem., 72,
65–80,
https://doi.org/10.1007/s10874-015-9302-8, 2015.
Kumar, N. K., Corbin, J. C., Bruns, E. A., Massabó, D., Slowik, J. G., Drinovec, L., Močnik, G., Prati, P., Vlachou, A., Baltensperger, U., Gysel, M., El-Haddad, I., and Prévôt, A. S. H.: Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions, Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, 2018.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.,
Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D.
R., and Davidovits, P.: Relationship between oxidation level and optical
properties of secondary organic aerosol, Environ. Sci. Technol., 47,
6349–6357,
https://doi.org/10.1021/es401043j, 2013.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167,
2015.
Lei, Y., Shen, Z., Wang, Q., Zhang, T., Cao, J., Sun, J., Zhang, Q., Wang,
L., Xu, H., Tian, J., and Wu, J.: Optical characteristics and source
apportionment of brown carbon in winter PM2.5 over Yulin in Northern
China, Atmos. Res., 213, 27–33,
https://doi.org/10.1016/j.atmosres.2018.05.018, 2018.
Lei, Y., Shen, Z., Zhang, T., Lu, D., Zeng, Y., Zhang, Q., Xu, H., Bei, N.,
Wang, X., and Cao, J.: High time resolution observation of PM2.5 Brown
carbon over Xi'an in northwestern China: Seasonal variation and source
apportionment, Chemosphere, 237, 124530,
https://doi.org/10.1016/j.chemosphere.2019.124530.124530, 2019.
Li, X., Zhao, Q., Yang, Y., Zhao, Z., Liu, Z., Wen, T., Hu, B., Wang, Y.,
Wang, L., and Wang, G.: Composition and sources of brown carbon aerosols in
megacity Beijing during the winter of 2016, Atmos. Res., 262,
https://doi.org/10.1016/j.atmosres.2021.105773, 2021.
Ma, Y., Ye, J., Xin, J., Zhang, W., Vilà-Guerau de Arellano, J., Wang,
S., Zhao, D., Dai, L., Ma, Y., Wu, X., Xia, X., Tang, G., Wang, Y., Shen,
P., Lei, Y., and Martin, S. T.: The stove, dome, and umbrella effects of
atmospheric aerosol on the development of the planetary boundary layer in
hazy regions, Geophys. Res. Lett., 47, e2020GL087373, https://doi.org/10.1029/2020GL087373,
2020.
Mo, Y., Li, J., Cheng, Z., Zhong, G., Zhu, S., Tian, C., Chen, Y., and
Zhang, G.: Dual carbon isotope-based source apportionment and light
absorption properties of water-soluble organic carbon in PM2.5 over
China, J. Geophys. Res.-Atmos., 126, e2020JD033920, https://doi.org/10.1029/2020JD033920,
2021.
Mukherjee, A., Dey, S., Rana, A., Jia, S., Banerjee, S., and Sarkar, S.:
Sources and atmospheric processing of brown carbon and HULIS in the
Indo-Gangetic Plain: Insights from compositional analysis, Environ. Pollut.,
267, 115440, https://doi.org/10.1016/j.envpol.2020.115440, 2020.
Ni, H., Huang, R. J., Pieber, S. M., Corbin, J. C., Stefenelli, G.,
Pospisilova, V., Klein, F., Gysel-Beer, M., Yang, L., Baltensperger, U.,
Haddad, I. E., Slowik, J. G., Cao, J., Prevot, A. S. H., and Dusek, U.:
Brown carbon in primary and aged coal combustion emission, Environ. Sci.
Technol., 55, 5701–5710,
https://doi.org/10.1021/acs.est.0c08084, 2021.
Peng, C., Yang, F., Tian, M., Shi, G., Li, L., Huang, R. J., Yao, X., Luo,
B., Zhai, C., and Chen, Y.: Brown carbon aerosol in two megacities in the
Sichuan Basin of southwestern China: Light absorption properties and
implications, Sci. Total. Environ., 719, 137483,
https://doi.org/10.1016/j.scitotenv.2020.137483, 2020.
Ram, K. and Sarin, M. M.: Day–night variability of EC, OC, WSOC and
inorganic ions in urban environment of Indo-Gangetic Plain: Implications to
secondary aerosol formation, Atmos. Environ., 45, 460–468,
https://doi.org/10.1016/j.atmosenv.2010.09.055, 2011.
Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.
Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts, A., Moosmüller, H., and Khlystov, A.: Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion, Atmos. Chem. Phys., 18, 10849–10867, https://doi.org/10.5194/acp-18-10849-2018, 2018.
Shakeri, A., Madadi, M., and Mehrabi, B.: Health risk assessment and source
apportionment of PAHs in industrial and bitumen contaminated soils of
Kermanshah province; NW Iran, Toxicology and Environmental Health Sciences,
8, 201–212, https://doi.org/10.1007/s13530-016-0277-x, 2016.
Shen, Z., Arimoto, R., Cao, J., Zhang, R., Li, X., Du, N., Okuda, T., Nakao,
S., and Tanaka, S.: Seasonal variations and evidence for the effectiveness
of pollution controls on water-soluble inorganic species in total suspended
particulates and fine particulate matter from Xi'an, China, J. Air. Waste.
Manag. Assoc., 58, 1560–1570, https://doi.org/10.3155/1047-3289.58.12.1560,
2008.
Shen, Z., Cao, J., Arimoto, R., Han, Y., Zhu, C., Tian, J., and Liu, S.:
Chemical Characteristics of Fine Particles (PM1) from Xi'an, China,
Aerosol. Sci. Tech., 44, 461–472,
https://doi.org/10.1080/02786821003738908, 2010.
Shen, Z., Sun, J., Cao, J., Zhang, L., Zhang, Q., Lei, Y., Gao, J., Huang,
R. J., Liu, S., Huang, Y., Zhu, C., Xu, H., Zheng, C., Liu, P., and Xue, Z.:
Chemical profiles of urban fugitive dust PM2.5 samples in Northern
Chinese cities, Sci. Total. Environ., 569–570, 619–626,
https://doi.org/10.1016/j.scitotenv.2016.06.156, 2016.
Shen, Z., Zhang, Q., Cao, J., Zhang, L., Lei, Y., Huang, Y., Huang, R. J.,
Gao, J., Zhao, Z., Zhu, C., Yin, X., Zheng, C., Xu, H., and Liu, S.: Optical
properties and possible sources of brown carbon in PM2.5 over Xi'an,
China, Atmos. Environ., 150, 322–330,
https://doi.org/10.1016/j.atmosenv.2016.11.024, 2017.
Soleimanian, E., Mousavi, A., Taghvaee, S., Shafer, M. M., and Sioutas, C.:
Impact of secondary and primary particulate matter (PM) sources on the
enhanced light absorption by brown carbon (BrC) particles in central Los
Angeles, Sci. Total. Environ., 705, 135902,
https://doi.org/10.1016/j.scitotenv.2019.135902, 2020.
Sreekanth, V., Niranjan, K., and Madhavan, B. L.: Radiative forcing of black
carbon over eastern India, Geophys. Res. Lett., 34, L17818,
https://doi.org/10.1029/2007GL030377, 2007.
Srinivas, B., Rastogi, N., Sarin, M. M., Singh, A., and Singh, D.: Mass
absorption efficiency of light absorbing organic aerosols from source region
of paddy-residue burning emissions in the Indo-Gangetic Plain, Atmos.
Environ., 125, 360–370, https://doi.org/10.1016/j.atmosenv.2015.07.017,
2016.
Sun, J., Shen, Z., Cao, J., Zhang, L., Wu, T., Zhang, Q., Yin, X., Lei, Y.,
Huang, Y., Huang, R. J., Liu, S., Han, Y., Xu, H., Zheng, C., and Liu, P.:
Particulate matters emitted from maize straw burning for winter heating in
rural areas in Guanzhong Plain, China: Current emission and future
reduction, Atmos. Res., 184, 66–76,
https://doi.org/10.1016/j.atmosres.2016.10.006, 2017.
Sun, J., Shen, Z., Zhang, L., Lei, Y., Gong, X., Zhang, Q., Zhang, T., Xu,
H., Cui, S., Wang, Q., Cao, J., Tao, J., Zhang, N., and Zhang, R.: Chemical
source profiles of urban fugitive dust PM2.5 samples from 21 cities
across China, Sci. Total. Environ., 649, 1045–1053,
https://doi.org/10.1016/j.scitotenv.2018.08.374, 2019.
Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen,
L., Zhang, Z., Wu, Y., Xia, Y., Ye, S., and Zhang, R.: Source apportionment
of PM2.5 at urban and suburban areas of the Pearl River Delta region,
south China - With emphasis on ship emissions, Sci. Total. Environ., 574,
1559–1570,
https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017.
Tao, Y., Sun, N., Li, X., Zhao, Z., Ma, S., Huang, H., Ye, Z., and Ge, X.:
Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like
Substances at Industrial and Suburban Sites in Changzhou, China, Atmosphere,
12, 276, https://doi.org/10.3390/atmos12020276, 2021.
Wang, D.: Winter brown carbon over six China's megacities: Light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network, Zenodo [data set], https://doi.org/10.5281/zenodo.6790321, 2022.
Wang, Y., Hu, M., Wang, Y., Zheng, J., Shang, D., Yang, Y., Liu, Y., Li, X., Tang, R., Zhu, W., Du, Z., Wu, Y., Guo, S., Wu, Z., Lou, S., Hallquist, M., and Yu, J. Z.: The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China, Atmos. Chem. Phys., 19, 7649–7665, https://doi.org/10.5194/acp-19-7649-2019, 2019.
Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z., and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical properties, Atmos. Chem. Phys., 20, 2017–2030, https://doi.org/10.5194/acp-20-2017-2020, 2020.
Wu, Y., Li, J., Jiang, C., Xia, Y., Tao, J., Tian, P., Zhou, C., Wang, C.,
Xia, X., Huang, R. J., and Zhang, R.: Spectral absorption properties of
organic carbon aerosol during a polluted winter in Beijing, China, Sci.
Total. Environ., 755, 142600,
https://doi.org/10.1016/j.scitotenv.2020.142600, 2021.
Xie, M., Hays, M. D., and Holder, A. L.: Light-absorbing organic carbon from
prescribed and laboratory biomass burning and gasoline vehicle emissions,
Sci. Rep.-UK, 7, 7318, https://doi.org/10.1038/s41598-017-06981-8, 2017.
Xie, X., Chen, Y., Nie, D., Liu, Y., Liu, Y., Lei, R., Zhao, X., Li, H., and
Ge, X.: Light-absorbing and fluorescent properties of atmospheric brown
carbon: A case study in Nanjing, China, Chemosphere, 251, 126350,
https://doi.org/10.1016/j.chemosphere.2020.126350, 2020.
Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A.
P., Collett, J. L., Zhao, B., Wang, S., He, K., and Gustafsson, O.:
Important fossil source contribution to brown carbon in Beijing during
winter, Sci. Rep.-UK, 7, 43182, https://doi.org/10.1038/srep43182, 2017.
Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon
aerosols: Recent progress and perspectives, Sci. Total. Environ., 634,
1475–1485, https://doi.org/10.1016/j.scitotenv.2018.04.083, 2018.
Yuan, W., Huang, R.-J., Yang, L., Guo, J., Chen, Z., Duan, J., Wang, T., Ni, H., Han, Y., Li, Y., Chen, Q., Chen, Y., Hoffmann, T., and O'Dowd, C.: Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China, Atmos. Chem. Phys., 20, 5129–5144, https://doi.org/10.5194/acp-20-5129-2020, 2020.
Zhang, Q., Shen, Z., Zhang, L., Zeng, Y., Ning, Z., Zhang, T., Lei, Y.,
Wang, Q., Li, G., Sun, J., Westerdahl, D., Xu, H., and Cao, J.:
Investigation of primary and secondary particulate brown carbon in two
Chinese cities of Xi'an and Hong Kong in wintertime, Environ. Sci. Technol.,
54, 3803–3813,
https://doi.org/10.1021/acs.est.9b05332, 2020.
Zhang, Q., Li, Z., Shen, Z., Zhang, T., Zhang, Y., Sun, J., Zeng, Y., Xu,
H., Wang, Q., Hang Ho, S. S., and Cao, J.: Source profiles of molecular
structure and light absorption of PM2.5 brown carbon from residential coal
combustion emission in Northwestern China, Environ. Pollut., 299, 118866,
https://doi.org/10.1016/j.envpol.2022.118866, 2022.
Zhang, T., Shen, Z., Zeng, Y., Cheng, C., Wang, D., Zhang, Q., Lei, Y.,
Zhang, Y., Sun, J., Xu, H., Ho, S. S. H., and Cao, J.: Light absorption
properties and molecular profiles of HULIS in PM2.5 emitted from
biomass burning in traditional “Heated Kang” in Northwest China, Sci.
Total. Environ., 776, 146014,
https://doi.org/10.1016/j.scitotenv.2021.146014, 2021.
Zhang, X., Lin, Y.-H., Surratt, J. D., Zotter, P., Prévôt, A. S. H.,
and Weber, R. J.: Light-absorbing soluble organic aerosol in Los Angeles and
Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett.,
38, L21810, https://doi.org/10.1029/2011GL049385, 2011.
Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources,
composition and absorption Angstrom exponent of light-absorbing organic
components in aerosol extracts from the Los Angeles Basin, Environ. Sci.
Technol., 47, 3685–3693, https://doi.org/10.1021/es305047b, 2013.
Zhao, R., Zhang, Q., Xu, X., Wang, W., Zhao, W., Zhang, W., and Zhang, Y.:
Light absorption properties and molecular compositions of water-soluble and
methanol-soluble organic carbon emitted from wood pyrolysis and combustion,
Sci. Total. Environ., 809, 151136,
https://doi.org/10.1016/j.scitotenv.2021.151136, 2022.
Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang,
N. N.: Light absorption properties of brown carbon over the southeastern
Tibetan Plateau, Sci. Total. Environ., 625, 246–251,
https://doi.org/10.1016/j.scitotenv.2017.12.183, 2018.
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of...
Altmetrics
Final-revised paper
Preprint