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Text S1. Optical properties of brown carbon (BrC) calculation 31 

The light absorption coefficient (babs, Mm−1) of the BrC was calculated using the following Eq. (S1): 32 

babsλ = (Aλ −  A700) × (Vext ×Portions) × ln(10) /  (Vareo × L)                              (S1) 33 

where Aλ and A700 represent the measured absorbance at a specified λ value and at 700 nm, respectively. 34 

In this study, λ was set to 365 nm. Furthermore, Vext represents the volume of the solvent extract (5 mL) 35 

in which different portions of the filter were used to extract and estimate the absorption signal for the full 36 

filter. Finally, Vaero represents the sampling volume, and L represents the path length of the cell (100 cm).  37 

In this study, ambient OC was used to replace methanol-soluble OC (MSOC) because several studies 38 

have indicated that most OC (~95%) can be extracted using methanol (Cheng et al., 2016; Huang et al., 39 

2018). The mass absorption efficiency (MAE, m2 g−1) of the filter extracts at λ was calculated using the 40 

following Eq. (S2): 41 

MAEλ = babsλ / OC                                                                  (S2) 42 

The wavelength dependence of light absorption by BrC in the solvent extracts was derived using the 43 

following Eq. (S3): 44 

babsλ  = K × λ
-AAE

                                                                   (S3) 45 

where K denotes a constant, λ denotes the wavelength of BrC, and AAE denotes the absorption Ångström 46 

exponent. In this study, to avoid interference from inorganic species, AAE was calculated through the 47 

linear regression fitting of log babs versus log λ in the 330–550-nm wavelength range. 48 

 49 

Text S2. The ANN-MLP model construction 50 

As shown in Figure S1, the ANN-MLP model includes three main layers: input layer, hidden layer, 51 

and output layer. The two adjacent layers are fully connected (i.e., any neuron in the layer has connections 52 

to all the neurons in the layer below). The input layer receives the daily contributions of the PM2.5 sources 53 

obtained from the PMF, and the BrC babs365 of six cities is set as the response variables in the output layer 54 

gives. In this study, we limited only a one hidden layer was used to design MLP models to explore the 55 

applicability of non-linear models. The neurons in the hidden layer computes the input data, realizes the 56 

nonlinear mapping of the input information, and passes the information to the output layer. The number 57 

of neurons in the hidden layer was determined automatically by the estimation algorithm (Borlaza et al., 58 

2021). The important parameters of neural network are the connection weights, bias and activation 59 

functions between different layers. The weight represents the connection strength between neurons, and 60 
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the bias ensures that the output value calculated through the input cannot be activated randomly. The 61 

activation function plays a role of nonlinear mapping, which can limit the output amplitude of neurons 62 

within a certain range. The process of finding optimal parameters is the training process of neural network. 63 

For instance, the transformation of the data from the input layer in the hidden layer can be expressed by 64 

Eq. (S4): 65 

∀ j ∈{1,…, l}, a j = H(∑ wi, j
Gd

i=1  × xi + w0, j
G )                                              (S4) 66 

with wi, j
G  the weight of the neuron between the input and hidden layer and w0, j

G  an activation constant 67 

for neuron j. The activation function H is often non-linear (Borlaza et al., 2021). 68 

The feedforward ANN-MLP model was trained with a back-propagation process (Chang et al., 69 

2019). For training the ANN and obtaining the optimal model, the following treatments were developed: 70 

(a) the dataset was standardized by subtracting the mean of the observed values and dividing by the 71 

standard deviation, then the standardized values were saved as variable; 72 

(b) 70% of the dataset was used as training set to train the model, and 30% of the dataset was used as test 73 

set to monitor errors during training process; 74 

(c) The nonlinear functions (activation functions) of sigmoid and hyperbolic tangent (TanH) were 75 

introduced to perform nonlinear transformation on hidden variables, and then serve as the input of the 76 

next fully connected layer; 77 

(d) initialized randomly the weights of adjacent layer nodes, and then the scaled conjugate and stochastic 78 

gradient descent optimization algorithms were used for iterative training to find the optimal weights 79 

between nodes of each layer; 80 

(e) the MLP training stops when the model output error reaches the set error standard. 81 

 82 

Text S3. SOC and POC calculation. 83 

To assess the sources of atmospheric BrC, primary OC (POC) and secondary OC (SOC) were 84 

estimated by using the EC tracer method (Ram and Sarin, 2011) as in the following equation: 85 

SOC = OCtot-EC × (OC/EC)
min

                                                      (S5) 86 

POC= OCtot -SOC                                                                  (S6) 87 

where OCtot is total OC, (OC/EC)min is the minimum OC/EC ratio observed at each site. 88 

 89 



S4 

 

 90 
Figure S1. The MLP neural network architecture used in this study, where n is the number of PM2.5 sources 91 

from PMF, G is the daily standardized contribution of sources, and babs is the light absorption coefficient of 92 

BrC. 93 

Table S1. Information of sampling sites 94 

Observation 

megacity 
Location 

Geographical 

China 
Site description 

Beijing 
39.97°N, 

116.36°E 

North China 

~8 m above ground level, in the north part of Beijing, which is close to several major roads including a 

highway and is surrounded by residences and restaurants. 

Harbin 
45.74°N， 

126.73°E 

~18 m above ground level, in the east of Harbin, surrounded by campus, roads, residential commercial  

emission sources 

Xi’an 
34.23°N, 

108.88°E 

~15 m above ground level, in the southeast of downtown Xi'an, surrounded by two lane roads,  

residential commercial districts. 

Chengdu 
30.70°N， 

104.06°E 
 

South China 

~18 m above ground level, on the rooftop of a building of Southwest Jiaotong University, surrounded by 

commercial and residential areas and close to a train station 

Guangzhou 
23.12°N, 

113.35°E 

~30 m above ground level, in the central of Guangzhou, there is no obvious industrial pollution source 

near the monitoring station. 

Wuhan 
30.53°N， 

114.39°E 

~18 m above ground level, in the southeast of Wuhan city, surrounded by roads, residential commercial 

districts, this is a typical urban site with no industrial emission sources nearby. 

 95 

Table S2. Concentrations of PM2.5 and carbonaceous components in six Chinese cities 96 

sites PM2.5(μg∙m-3) OC(μg∙m-3) EC(μg∙m-3) SOC(μg∙m-3) POC(μg∙m-3) 

Beijing 55.5 ± 41.5 12.5 ± 5.9 2.1 ± 1.7 5.0 ± 1.2 6.3 ± 2.9 

Harbin 85.5 ± 43.9 19.4 ± 8.5 7.5 ± 5.6 9.2 ± 3.9 10.2 ± 5.5 

Xi’an 80.7 ± 49.8 15.5 ± 7.9 3.6 ± 2.9 6.9 ± 3.8 7.8 ± 2.8 
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Chengdu 71.8 ± 28.2 5.6 ± 2.7 2.3 ± 1.0 1.0 ± 0.4 4.6 ± 2.2 

Guangzhou 42.5 ± 17.2 10.9 ± 3.7 2.8 ± 2.0 6.9 ± 1.4 4.0 ± 2.7 

Wuhan 63.9 ± 26.1 11.7 ± 4.8 4.2 ± 2.0 3.1 ± 1.6 8.2 ± 3.5 

 97 

 98 

 99 

Figure S2. The relationship between the abundance of POC & SOC and BrC babs365 in six cities. 100 
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 101 

Figure S3. The relationship between the abundance of K+ and BrC babs365 in BJ, HrB, XA and WH. 102 

 103 
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 104 

 105 

Figure S4. Source profiles (bars and left y-axis) and percentage contributions (dots and y-axis) of each 106 

chemical component resolved from PMF model analysis in six megacities. 107 

 108 
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 109 

Figure S5. Average source contribution to aerosol mass concentration that is estimated by PMF source factor. 110 

 111 

Figure S6. The correlation of the observed and modelled BrC babs365 for the six cities using MLP analysis. 112 

 113 
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