Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7695-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7695-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
School of Earth and Environment, University of Leeds, Leeds, UK
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Alan M. Gadian
School of Earth and Environment, University of Leeds, Leeds, UK
Lars Hoffmann
Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
John K. Hughes
School of Earth and Environment, University of Leeds, Leeds, UK
David R. Jackson
Met Office, Exeter, UK
John C. King
Atmosphere, Ice and Climate Group, British Antarctic Survey, Cambridge, UK
Nicholas J. Mitchell
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Tracy Moffat-Griffin
Atmosphere, Ice and Climate Group, British Antarctic Survey, Cambridge, UK
Andrew C. Moss
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Simon B. Vosper
Met Office, Exeter, UK
Andrew N. Ross
School of Earth and Environment, University of Leeds, Leeds, UK
Related authors
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Preprint archived
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021, https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Preprint under review for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
Atmos. Chem. Phys., 24, 11759–11774, https://doi.org/10.5194/acp-24-11759-2024, https://doi.org/10.5194/acp-24-11759-2024, 2024
Short summary
Short summary
This study provided estimates of the occurrence of ice polar stratospheric clouds (PSCs) observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and their connection with temperatures above the frost point (Tice) using a Lagrangian model derived from ERA5. We found that ice PSCs above Tice with temperature fluctuations along the backward trajectory are 33 % in the Arctic and 9 % in the Antarctic. This quantitative assessment enhances our understanding of ice PSCs.
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2596, https://doi.org/10.5194/egusphere-2024-2596, 2024
Short summary
Short summary
We studied the transport and chemical decomposition of volcanic SO2, focusing on the 2019 Raikoke event. By comparing two different chemistry modeling schemes, we found that including complex chemical reactions leads to a more accurate prediction of how long SO2 stays in the atmosphere. This research helps improve our understanding of volcanic pollution and its impact on air quality and climate, providing better tools for scientists to track and predict the movement of these pollutants.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Jan Clemens, Lars Hoffmann, Bärbel Vogel, Sabine Grießbach, and Nicole Thomas
Geosci. Model Dev., 17, 4467–4493, https://doi.org/10.5194/gmd-17-4467-2024, https://doi.org/10.5194/gmd-17-4467-2024, 2024
Short summary
Short summary
Lagrangian transport models simulate the transport of air masses in the atmosphere. For example, one model (CLaMS) is well suited to calculating transport as it uses a special coordinate system and special vertical wind. However, it only runs inefficiently on modern supercomputers. Hence, we have implemented the benefits of CLaMS into a new model (MPTRAC), which is already highly efficient on modern supercomputers. Finally, in extensive tests, we showed that CLaMS and MPTRAC agree very well.
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024, https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Short summary
Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
Geosci. Model Dev., 17, 261–273, https://doi.org/10.5194/gmd-17-261-2024, https://doi.org/10.5194/gmd-17-261-2024, 2024
Short summary
Short summary
We enabled the weather and climate model ICON to run in a high-resolution coupled atmosphere–ocean setup on the JUWELS supercomputer, where the ocean and the model I/O runs on the CPU Cluster, while the atmosphere is running simultaneously on GPUs. Compared to a simulation performed on CPUs only, our approach reduces energy consumption by 45 % with comparable runtimes. The experiments serve as preparation for efficient computing of kilometer-scale climate models on future supercomputing systems.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Preprint archived
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
Atmos. Chem. Phys., 23, 7589–7609, https://doi.org/10.5194/acp-23-7589-2023, https://doi.org/10.5194/acp-23-7589-2023, 2023
Short summary
Short summary
Atmospheric convection plays a key role in tracer transport in the troposphere. Global meteorological forecasts and reanalyses typically have a coarse spatiotemporal resolution that does not adequately resolve the dynamics, transport, and mixing of air associated with storm systems or deep convection. We discuss the application of the extreme convection parameterization in a Lagrangian transport model to improve simulations of tracer transport from the boundary layer into the free troposphere.
William Stanley Torgerson, Juliane Schwendike, Andrew Ross, and Chris Short
EGUsphere, https://doi.org/10.5194/egusphere-2023-1272, https://doi.org/10.5194/egusphere-2023-1272, 2023
Preprint archived
Short summary
Short summary
Two types of fluctuations were studied in Hurricane Irma (2017) using model simulations. The first type of fluctuation, the eyewall replacement cycle, has a Hurricane’s eyewall replaced by a second outer eyewall that develops further out. The other type of fluctuation has no replacement of the eyewall but a disruption to its structure instead.
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023, https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Short summary
Using AIRS and TROPOMI sulfur dioxide retrievals and the Lagrangian transport model MPTRAC, we present an improved reconstruction of injection parameters of the 2019 Raikoke eruption. Reconstructions agree well between using AIRS nighttime and TROPOMI daytime retrievals, showing the potential of our approach to create a long-term volcanic sulfur dioxide inventory from nearly 20 years of AIRS retrievals.
Ling Zou, Sabine Griessbach, Lars Hoffmann, and Reinhold Spang
Atmos. Chem. Phys., 22, 6677–6702, https://doi.org/10.5194/acp-22-6677-2022, https://doi.org/10.5194/acp-22-6677-2022, 2022
Short summary
Short summary
Ice clouds in the stratosphere (SICs) greatly affect the water vapor balance and radiation budget in the upper troposphere and lower stratosphere (UTLS). We quantified the global SICs and analyzed their relationships with tropopause temperature, double tropopauses, UTLS clouds, gravity waves, and stratospheric aerosols. The correlations between SICs and all abovementioned processes indicate that the occurrence of and variability in SICs are spatiotemporally dependent on different processes.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Lars Hoffmann, Paul F. Baumeister, Zhongyin Cai, Jan Clemens, Sabine Griessbach, Gebhard Günther, Yi Heng, Mingzhao Liu, Kaveh Haghighi Mood, Olaf Stein, Nicole Thomas, Bärbel Vogel, Xue Wu, and Ling Zou
Geosci. Model Dev., 15, 2731–2762, https://doi.org/10.5194/gmd-15-2731-2022, https://doi.org/10.5194/gmd-15-2731-2022, 2022
Short summary
Short summary
We describe the new version (2.2) of the Lagrangian transport model MPTRAC, which has been ported for application on GPUs. The model was verified by comparing kinematic trajectories and synthetic tracer simulations for the free troposphere and stratosphere from GPUs and CPUs. Benchmarking showed a speed-up of a factor of 16 of GPU-enabled simulations compared to CPU-only runs, indicating the great potential of applying GPUs for Lagrangian transport simulations on upcoming HPC systems.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Paul F. Baumeister and Lars Hoffmann
Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
Short summary
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021, https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021, https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary
Short summary
Ice clouds in the lowermost stratosphere (SICs) have important impacts on the radiation budget and climate change. We quantified the occurrence of SICs over North America and analysed its relations with convective systems and gravity waves to investigate potential formation mechanisms of SICs. Deep convection is proved to be the primary factor linked to the occurrence of SICs over North America.
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021, https://doi.org/10.5194/acp-21-9515-2021, 2021
Short summary
Short summary
We show that we are able to directly simulate polar stratospheric clouds formed locally in a mountain wave and represent their effect on the ozone chemistry with the global atmospheric chemistry model ICON-ART. Thus, we show the first simulations that close the gap between directly resolved mountain-wave-induced polar stratospheric clouds and their representation at coarse global resolutions.
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway
Atmos. Chem. Phys., 21, 7271–7292, https://doi.org/10.5194/acp-21-7271-2021, https://doi.org/10.5194/acp-21-7271-2021, 2021
Short summary
Short summary
We present a new aerosol activation scheme suitable for modelling both fog and convective clouds. Most current activation schemes are designed for convective clouds, and we demonstrate that using them to model fog can negatively impact its life cycle. Our scheme has been used to model an observed fog case in the UK, where we demonstrate that a more physically based representation of aerosol activation is required to capture the transition to a deeper layer – more in line with observations.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke
The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020, https://doi.org/10.5194/tc-14-4165-2020, 2020
Short summary
Short summary
Föhn winds are warm and dry downslope winds in the lee of a mountain range, such as the Antarctic Peninsula. Föhn winds heat the ice of the Larsen C Ice Shelf at the base of the mountains and promote more melting than during non-föhn periods in spring, summer and autumn in both model output and observations. Especially in spring, when they are most frequent, föhn winds can extend the melt season by over a month and cause a similar magnitude of melting to that observed in summer.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020, https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.
Mike Bush, Tom Allen, Caroline Bain, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Humphrey Lean, Adrian Lock, James Manners, Marion Mittermaier, Cyril Morcrette, Rachel North, Jon Petch, Chris Short, Simon Vosper, David Walters, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, https://doi.org/10.5194/gmd-13-1999-2020, 2020
Short summary
Short summary
In this paper we define the first Regional Atmosphere and Land (RAL) science configuration for kilometre-scale modelling using the Unified Model (UM) as the basis for the atmosphere and the Joint UK Land Environment Simulator (JULES) for the land. RAL1 defines the science configuration of the dynamics and physics schemes of the atmosphere and land. This configuration will provide a model baseline for any future weather or climate model developments to be described against.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Constantino Listowski, Julien Delanoë, Amélie Kirchgaessner, Tom Lachlan-Cope, and John King
Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019, https://doi.org/10.5194/acp-19-6771-2019, 2019
Short summary
Short summary
Using satellite cloud products we investigate the supercooled liquid-water (SLW) distribution Antarctic-wide for the first time. We demonstrate differences between the monthly evolution of the marine low-level mixed-phase clouds and that of the marine low-level pure SLW clouds. In addition to the temperature and sea ice fraction as factors explaining the low-level liquid-cloud seasonal cycle, ice nuclei emissions from open water may also be driving the mixed-phase cloud monthly evolution.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Lars Hoffmann, Gebhard Günther, Dan Li, Olaf Stein, Xue Wu, Sabine Griessbach, Yi Heng, Paul Konopka, Rolf Müller, Bärbel Vogel, and Jonathon S. Wright
Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, https://doi.org/10.5194/acp-19-3097-2019, 2019
Short summary
Short summary
ECMWF's new ERA5 reanalysis provides higher spatiotemporal resolution, yielding an improved representation of meso- and synoptic-scale features of the atmosphere. We assessed the impact of this challenging new data set on Lagrangian trajectory calculations for the free troposphere and stratosphere. Key findings are considerable transport deviations between the ERA5 and ERA-Interim simulations as well as significantly improved conservation of potential temperature in the stratosphere for ERA5.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 18, 15859–15877, https://doi.org/10.5194/acp-18-15859-2018, https://doi.org/10.5194/acp-18-15859-2018, 2018
Short summary
Short summary
Volcanic aerosol is an important source of sulfur for Antarctica, where local sources of sulfur are rare. Midlatitude and high-latitude volcanism can directly influence the aerosol budget of the polar stratosphere, but tropical volcanic eruptions can also enhance polar aerosols by transport. Our study investigates pathway and transport processes of volcanic aerosol from the tropics to the lower stratosphere over Antarctica by combining Lagrangian transport simulation and satellite observations.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Thomas Rößler, Olaf Stein, Yi Heng, Paul Baumeister, and Lars Hoffmann
Geosci. Model Dev., 11, 575–592, https://doi.org/10.5194/gmd-11-575-2018, https://doi.org/10.5194/gmd-11-575-2018, 2018
Short summary
Short summary
In this study, we performed an assessment of truncation errors and computational efficiency of trajectory calculations using six popular numerical integration schemes of the Runge–Kutta family. More than 5000 transport simulations for different seasons and regions of the free troposphere and stratosphere were conducted, driven by the latest version of ECMWF operational analyses and forecasts. The study provides guidelines to achieve the most accurate and efficient trajectory calculations.
Catrin I. Meyer, Manfred Ern, Lars Hoffmann, Quang Thai Trinh, and M. Joan Alexander
Atmos. Meas. Tech., 11, 215–232, https://doi.org/10.5194/amt-11-215-2018, https://doi.org/10.5194/amt-11-215-2018, 2018
Short summary
Short summary
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) and the High Resolution Dynamics Limb Sounder (HIRDLS). Waves seen by AIRS contribute significantly to momentum flux, which indicates a calculated momentum flux factor. AIRS and HIRDLS agree well in the phase structure of the wave events and also in the seasonal and latitudinal patterns of gravity wave activity and can be used complementary to each other.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, https://doi.org/10.5194/acp-17-13439-2017, 2017
Short summary
Short summary
This study is focused on the Sarychev eruption in 2009. Based on Lagrangian model simulations and satellite data, the equatorward transport of the plume and aerosol from the Sarychev eruption is confirmed, and the transport is facilitated by the Asian summer monsoon anticyclonic circulations. The aerosol transported to the tropics remained for months and dispersed upward, which could make the Sarychev eruption have a similar global climate impact as a tropical volcanic eruption.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Lars Hoffmann, Reinhold Spang, Andrew Orr, M. Joan Alexander, Laura A. Holt, and Olaf Stein
Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, https://doi.org/10.5194/acp-17-2901-2017, 2017
Short summary
Short summary
We introduce a 10-year record (2003–2012) of AIRS/Aqua observations of gravity waves in the polar lower stratosphere. The data set was optimized to study the impact of gravity waves on the formation of polar stratospheric clouds (PSCs). We discuss the temporal and spatial patterns of gravity wave activity, validate explicitly resolved small-scale temperature fluctuations in the ECMWF data, and present a survey of gravity-wave-induced PSC formation events using joint AIRS and MIPAS observations.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Marc von Hobe, Rolf Müller, and Martin Riese
Atmos. Meas. Tech., 9, 4399–4423, https://doi.org/10.5194/amt-9-4399-2016, https://doi.org/10.5194/amt-9-4399-2016, 2016
Short summary
Short summary
A new method for detecting aerosol in the UTLS based on infrared limb emission measurements is presented. The method was developed using radiative transfer simulations (including scattering) and Envisat MIPAS measurements. Results are presented for volcanic ash and sulfate aerosol originating from the Grimsvötn (Iceland), Puyehue–Cordon Caulle (Chile), and Nabro (Eritrea) eruptions in 2011 and compared with AIRS volcanic ash and SO2 measurements.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Lars Hoffmann, Alison W. Grimsdell, and M. Joan Alexander
Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, https://doi.org/10.5194/acp-16-9381-2016, 2016
Short summary
Short summary
We present a 12-year record (2003-2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the AIRS/Aqua satellite instrument. We introduce a method to discriminate between gravity waves from orographic or other sources and propose a simple model to predict the occurrence of mountain waves using zonal wind thresholds. The prediction model can help to disentangle upper level wind effects from low level source and other influences.
David A. Newnham, George P. Ford, Tracy Moffat-Griffin, and Hugh C. Pumphrey
Atmos. Meas. Tech., 9, 3309–3323, https://doi.org/10.5194/amt-9-3309-2016, https://doi.org/10.5194/amt-9-3309-2016, 2016
Short summary
Short summary
We demonstrate the feasibility of measuring polar atmospheric winds over the altitude range 23–97 km using ground-based millimetre-wave Doppler radiometry. Atmospheric and instrument simulations were carried out for Halley station, Antarctica. This remote sensing technique will provide continuous horizontal wind observations in the stratosphere and mesosphere where measurements are currently very limited. The data are needed for meteorological analyses and atmospheric modelling applications.
Neil P. Hindley, Nathan D. Smith, Corwin J. Wright, D. Andrew S. Rees, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, https://doi.org/10.5194/amt-9-2545-2016, 2016
Short summary
Short summary
Gravity waves are medium-sized momentum-carrying atmospheric waves that nearly all weather and climate models struggle to represent. Thus, the accurate global measurement of gravity-wave properties in the real atmosphere is of key importance. Here we use a new two-dimensional Stockwell transform (2-DST) method to measure key GW properties in 2-D satellite data. We show that our 2-DST approach greatly improves upon current methods, particularly if a new elliptical spectral window is used.
Yi Heng, Lars Hoffmann, Sabine Griessbach, Thomas Rößler, and Olaf Stein
Geosci. Model Dev., 9, 1627–1645, https://doi.org/10.5194/gmd-9-1627-2016, https://doi.org/10.5194/gmd-9-1627-2016, 2016
Short summary
Short summary
A new inverse modeling and simulation system is developed to enable efficient and reliable transport simulations of volcanic SO2 at large scale. The complex time- and altitude-dependent volcanic emission pattern of the Nabro eruption is identified by our inversion algorithm. The simulation results show good agreements with different satellite observations in terms of SO2 horizontal distributions, and help to further reveal the complex transport processes such as the Asian monsoon circulation.
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
Andrew C. Moss, Corwin J. Wright, Robin N. Davis, and Nicholas J. Mitchell
Ann. Geophys., 34, 323–330, https://doi.org/10.5194/angeo-34-323-2016, https://doi.org/10.5194/angeo-34-323-2016, 2016
Short summary
Short summary
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds are observed in the first phase of the MSAO. It has been proposed that this is due to filtering of ascending gravity waves. We report the first gravity-wave momentum flux observations from the Ascension Island (8° S, 14° W) meteor radar and show that anomalous fluxes were observed during one such event in 2002. Analysis of the underlying winds suggests the wave-filtering hypothesis is not valid.
A. D. Elvidge, I. A. Renfrew, A. I. Weiss, I. M. Brooks, T. A. Lachlan-Cope, and J. C. King
Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016, https://doi.org/10.5194/acp-16-1545-2016, 2016
Short summary
Short summary
Rare aircraft observations of surface momentum flux over the Arctic marginal ice zone provide the best means yet to constrain model representation of MIZ surface roughness. The sensitivity of surface roughness to ice concentration over the Arctic MIZ is presented; these results do not support the values used in many models. However, a leading parameterization scheme (that of Lüpkes et al., 2012) is found to provide a good representation of form drag, after some parameter alterations.
H. Iimura, D. C. Fritts, D. Janches, W. Singer, and N. J. Mitchell
Ann. Geophys., 33, 1349–1359, https://doi.org/10.5194/angeo-33-1349-2015, https://doi.org/10.5194/angeo-33-1349-2015, 2015
Short summary
Short summary
The quasi-5-day wave at mid- and high-latitudes in the mesosphere and lower-thermosphere was compared between the hemispheres using meteor radar horizontal wind measurements, spanning June 2010 to December 2012. Variances of the quasi-5-day wave showed a wave activity from July to August in both hemispheres and in April 2012 in the Northern Hemisphere and November 2012 in the Southern Hemisphere with unique characteristics at each site.
J. K. Hughes, A. N. Ross, S. B. Vosper, A. P. Lock, and B. C. Jemmett-Smith
Geosci. Model Dev., 8, 3105–3117, https://doi.org/10.5194/gmd-8-3105-2015, https://doi.org/10.5194/gmd-8-3105-2015, 2015
Short summary
Short summary
The formation of cold air pools in valleys under stable conditions represents an important challenge for numerical weather prediction (NWP). In this study a two-month cold pool simulation is presented using a high-resolution NWP model. Results are compared to observations and assumptions made in the cloud parametrization scheme about the sub-grid variability of humidity are shown to dominate model bias. Our results show that this is a key area for very high resolution modelling development.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
A. Orr, J. S. Hosking, L. Hoffmann, J. Keeble, S. M. Dean, H. K. Roscoe, N. L. Abraham, S. Vosper, and P. Braesicke
Atmos. Chem. Phys., 15, 1071–1086, https://doi.org/10.5194/acp-15-1071-2015, https://doi.org/10.5194/acp-15-1071-2015, 2015
R. Spang, G. Günther, M. Riese, L. Hoffmann, R. Müller, and S. Griessbach
Atmos. Chem. Phys., 15, 927–950, https://doi.org/10.5194/acp-15-927-2015, https://doi.org/10.5194/acp-15-927-2015, 2015
Short summary
Short summary
Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS) region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.
N. J. Mayne, I. Baraffe, D. M. Acreman, C. Smith, N. Wood, D. S. Amundsen, J. Thuburn, and D. R. Jackson
Geosci. Model Dev., 7, 3059–3087, https://doi.org/10.5194/gmd-7-3059-2014, https://doi.org/10.5194/gmd-7-3059-2014, 2014
L. Hoffmann, M. J. Alexander, C. Clerbaux, A. W. Grimsdell, C. I. Meyer, T. Rößler, and B. Tournier
Atmos. Meas. Tech., 7, 4517–4537, https://doi.org/10.5194/amt-7-4517-2014, https://doi.org/10.5194/amt-7-4517-2014, 2014
Short summary
Short summary
We present stratospheric gravity wave observations from 4.3 micron radiance measurements by the nadir sounders AIRS and IASI. Three case studies demonstrate that AIRS and IASI provide a consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on five years of data (2008-2012) also showed similar patterns of gravity wave activity. Long-term records from combined satellite data are an exciting prospect for future gravity wave research.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014, https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
Short summary
Stratospheric lifetimes determine the global warming and ozone depletion potentials of chlorofluorocarbons. We present new estimates of the CFC-11/CFC-12 lifetime ratio from satellite and model data (ACE-FTS, HIRDLS, MIPAS, and EMAC/CLaMS). Our estimates of 0.46+/-0.04 (satellites) and 0.48+/-0.07 (model) are in excellent agreement with the recent SPARC reassessment. Having smaller uncertainties than other studies, our results can help to better constrain future CFC lifetime recommendations.
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
D. P. Grosvenor, J. C. King, T. W. Choularton, and T. Lachlan-Cope
Atmos. Chem. Phys., 14, 9481–9509, https://doi.org/10.5194/acp-14-9481-2014, https://doi.org/10.5194/acp-14-9481-2014, 2014
I. Välisuo, T. Vihma, and J. C. King
The Cryosphere, 8, 1519–1538, https://doi.org/10.5194/tc-8-1519-2014, https://doi.org/10.5194/tc-8-1519-2014, 2014
S. Griessbach, L. Hoffmann, R. Spang, and M. Riese
Atmos. Meas. Tech., 7, 1487–1507, https://doi.org/10.5194/amt-7-1487-2014, https://doi.org/10.5194/amt-7-1487-2014, 2014
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
J. Ungermann, L. L. Pan, C. Kalicinsky, F. Olschewski, P. Knieling, J. Blank, K. Weigel, T. Guggenmoser, F. Stroh, L. Hoffmann, and M. Riese
Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, https://doi.org/10.5194/acp-13-10517-2013, 2013
R. N. Davis, J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell
Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, https://doi.org/10.5194/acp-13-9543-2013, 2013
K. A. Day and N. J. Mitchell
Atmos. Chem. Phys., 13, 9515–9523, https://doi.org/10.5194/acp-13-9515-2013, https://doi.org/10.5194/acp-13-9515-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
K. Minschwaner, L. Hoffmann, A. Brown, M. Riese, R. Müller, and P. F. Bernath
Atmos. Chem. Phys., 13, 4253–4263, https://doi.org/10.5194/acp-13-4253-2013, https://doi.org/10.5194/acp-13-4253-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Observational perspective on sudden stratospheric warmings and blocking from Eliassen–Palm fluxes
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Stratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
A new methodology for measuring traveling quasi-5-day oscillations during sudden stratospheric warming events based on satellite observations
The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Direct inversion of circulation from tracer measurements – Part 2: Sensitivity studies and model recovery tests
Record low ozone values over the Arctic in boreal spring 2020
New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations
Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry
Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis
Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses
Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund
Influence of ENSO and MJO on the zonal structure of tropical tropopause inversion layer using high-resolution temperature profiles retrieved from COSMIC GPS Radio Occultation
How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?
First tomographic observations of gravity waves by the infrared limb imager GLORIA
Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air
Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage
A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements
The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss
The tropical tropopause inversion layer: variability and modulation by equatorial waves
Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings
Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
Global temperature response to the major volcanic eruptions in multiple reanalysis data sets
Reassessment of MIPAS age of air trends and variability
Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region
Global distributions of overlapping gravity waves in HIRDLS data
The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO
Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere
The influence of the North Atlantic Oscillation and El Niño–Southern Oscillation on mean and extreme values of column ozone over the United States
Short vertical-wavelength inertia-gravity waves generated by a jet–front system at Arctic latitudes – VHF radar, radiosondes and numerical modelling
A climatology of the diurnal variations in stratospheric and mesospheric ozone over Bern, Switzerland
Long-term changes in the upper stratospheric ozone at Syowa, Antarctica
Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations
Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010
Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS
Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere
Quantification of structural uncertainty in climate data records from GPS radio occultation
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023, https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
Short summary
The Madden–Julian oscillation is an important feature of weather in the tropics. Although it is mainly active in the troposphere, we show that it systematically influences the air temperature in the layers above, up to about 100 km altitude and from pole to pole. We have linked this to another known far-reaching process, interhemispheric coupling. This is basic research on atmospheric couplings and variability but might also be of interest for intraseasonal weather forecasting models.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Short summary
A comprehensive data set of airborne lidar water vapour profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Collocated O3 and H2O observations reveal a particularly strong bias in the mixing layer, indicating insufficiently modelled transport processes fostering the bias.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022, https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
Thomas von Clarmann, Udo Grabowski, Gabriele P. Stiller, Beatriz M. Monge-Sanz, Norbert Glatthor, and Sylvia Kellmann
Atmos. Chem. Phys., 21, 8823–8843, https://doi.org/10.5194/acp-21-8823-2021, https://doi.org/10.5194/acp-21-8823-2021, 2021
Short summary
Short summary
Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Multiannual monthly mean circulation fields are presented.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Thomas von Clarmann and Udo Grabowski
Atmos. Chem. Phys., 21, 2509–2526, https://doi.org/10.5194/acp-21-2509-2021, https://doi.org/10.5194/acp-21-2509-2021, 2021
Short summary
Short summary
The direct inversion of the 2D continuity equation allows us to infer the effective meridional transport velocity of trace gases in the middle stratosphere. This method exploits the information both given by the displacement of patterns in measured trace gas distributions and by the approximate balance between sinks and horizontal as well as vertical advection. The robustness of this method has been tested and characterized using model recovery tests and sensitivity studies.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Lars Hoffmann, Reinhold Spang, Andrew Orr, M. Joan Alexander, Laura A. Holt, and Olaf Stein
Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, https://doi.org/10.5194/acp-17-2901-2017, 2017
Short summary
Short summary
We introduce a 10-year record (2003–2012) of AIRS/Aqua observations of gravity waves in the polar lower stratosphere. The data set was optimized to study the impact of gravity waves on the formation of polar stratospheric clouds (PSCs). We discuss the temporal and spatial patterns of gravity wave activity, validate explicitly resolved small-scale temperature fluctuations in the ECMWF data, and present a survey of gravity-wave-induced PSC formation events using joint AIRS and MIPAS observations.
Asen Grytsai, Andrew Klekociuk, Gennadi Milinevsky, Oleksandr Evtushevsky, and Kane Stone
Atmos. Chem. Phys., 17, 1741–1758, https://doi.org/10.5194/acp-17-1741-2017, https://doi.org/10.5194/acp-17-1741-2017, 2017
Short summary
Short summary
Twenty years ago we discovered that the ozone hole shape is asymmetric. This asymmetry is minimum over the Weddell Sea region and maximum over the Ross Sea area. Later we detected that the position of the ozone minimum is shifting east. We have continued to follow this event, and a couple years ago we revealed that the shift is slowing down and starting to move back. We connect all this movement with ozone hole increase; since 2000 the ozone layer has been stabilizing and recently recovering.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Gloria L. Manney and Zachary D. Lawrence
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, https://doi.org/10.5194/acp-16-15371-2016, 2016
Short summary
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Lars Hoffmann, Alison W. Grimsdell, and M. Joan Alexander
Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, https://doi.org/10.5194/acp-16-9381-2016, 2016
Short summary
Short summary
We present a 12-year record (2003-2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the AIRS/Aqua satellite instrument. We introduce a method to discriminate between gravity waves from orographic or other sources and propose a simple model to predict the occurrence of mountain waves using zonal wind thresholds. The prediction model can help to disentangle upper level wind effects from low level source and other influences.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
C. J. Wright, S. M. Osprey, and J. C. Gille
Atmos. Chem. Phys., 15, 8459–8477, https://doi.org/10.5194/acp-15-8459-2015, https://doi.org/10.5194/acp-15-8459-2015, 2015
Short summary
Short summary
Data from the HIRDLS instrument are used to study the numerical variability of gravity waves. Observed distributions are dominated by long-vertical-short-horizontal-wavelength waves, with a similar spectral form at all locations. We further divide our data into subspecies by wavelength, and investigate variation in these subspecies in time and space. We show that the variations associated with particular phenomena arise due to changes in specific parts of the spectrum.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
E. E. Remsberg
Atmos. Chem. Phys., 15, 3739–3754, https://doi.org/10.5194/acp-15-3739-2015, https://doi.org/10.5194/acp-15-3739-2015, 2015
Short summary
Short summary
Time series of the satellite-observed stratospheric tracer, CH4, are analyzed to see whether they indicate a significant trend for the hemispheric Brewer--Dobson circulation (BDC) for 1992-2005. Trends in CH4 for the lower stratosphere are generally positive and equivalent to those of the troposphere. However, the Northern Hemisphere BDC is clearly accelerated in the mid-stratosphere (20 to 7hPa). Corresponding trends for the Southern Hemisphere are smaller and less significant.
I. Petropavlovskikh, R. Evans, G. McConville, G. L. Manney, and H. E. Rieder
Atmos. Chem. Phys., 15, 1585–1598, https://doi.org/10.5194/acp-15-1585-2015, https://doi.org/10.5194/acp-15-1585-2015, 2015
A. Réchou, S. Kirkwood, J. Arnault, and P. Dalin
Atmos. Chem. Phys., 14, 6785–6799, https://doi.org/10.5194/acp-14-6785-2014, https://doi.org/10.5194/acp-14-6785-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
K. Miyagawa, I. Petropavlovskikh, R. D. Evans, C. Long, J. Wild, G. L. Manney, and W. H. Daffer
Atmos. Chem. Phys., 14, 3945–3968, https://doi.org/10.5194/acp-14-3945-2014, https://doi.org/10.5194/acp-14-3945-2014, 2014
N. M. Gavrilov
Atmos. Chem. Phys., 13, 12107–12116, https://doi.org/10.5194/acp-13-12107-2013, https://doi.org/10.5194/acp-13-12107-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
S. M. Khaykin, J.-P. Pommereau, and A. Hauchecorne
Atmos. Chem. Phys., 13, 6391–6402, https://doi.org/10.5194/acp-13-6391-2013, https://doi.org/10.5194/acp-13-6391-2013, 2013
P. Baron, D. P. Murtagh, J. Urban, H. Sagawa, S. Ochiai, Y. Kasai, K. Kikuchi, F. Khosrawi, H. Körnich, S. Mizobuchi, K. Sagi, and M. Yasui
Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, https://doi.org/10.5194/acp-13-6049-2013, 2013
T. Flury, D. L. Wu, and W. G. Read
Atmos. Chem. Phys., 13, 4563–4575, https://doi.org/10.5194/acp-13-4563-2013, https://doi.org/10.5194/acp-13-4563-2013, 2013
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, https://doi.org/10.5194/acp-13-3849-2013, 2013
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Cited articles
AIRS project: AIRS/Aqua L1B Visible/Near Infrared (VIS/NIR) geolocated and calibrated radiances V005, https://doi.org/10.5067/L8GM703NT8IK, https://disc.gsfc.nasa.gov/datacollection/AIRVBRAD_005.html (last access: 1 January 2020), 2007. a
Alexander, M. J.: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures, Geophys. Res. Lett., 42, 6860–6867, https://doi.org/10.1002/2015GL065234, 2015. a
Alexander, M. J. and Barnet, C.: Using satellite observations to constrain parameterizations of gravity wave effects for global models., J. Atmos. Sci., 64, 1652–1665, https://doi.org/10.1175/JAS3897.1, 2007. a, b, c
Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J., Hepplewhite, C., Lambert, A., and Dean, V.: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations, J. Geophys. Res., 113, D15S18, https://doi.org/10.1029/2007jd008807, 2008. a
Alexander, M. J., Eckermann, S. D., Broutman, D., and Ma, J.: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite, Geophy. Res. Lett., 36, L12 816, https://doi.org/10.1029/2009GL038587, 2009. a, b, c
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. a, b
Alexander, P., Luna, D., Llamedo, P., and de la Torre, A.: A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations, Ann. Geophys., 28, 587–595, https://doi.org/10.5194/angeo-28-587-2010, 2010. a
Alexander, P., de la Torre, A., Schmidt, T., Llamedo, P., and Hierro, R.: Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes, J. Geophys. Res., 120, 9014–9022, https://doi.org/10.1002/2015ja021409, 2015. a
Alexander, P., de la Torre, A., Kaifler, N., Kaifler, B., Salvador, J., Llamedo, P., Hierro, R., and Hormaechea, J. L.: Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave, Earth and Space Science, 7, e2020EA001 074, https://doi.org/10.1029/2020EA001074, 2020. a
Alexander, S. P., Klekociuk, A. R., and Tsuda, T.: Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation, J. Geophys. Res., 114, d17103, https://doi.org/10.1029/2009JD011851, 2009. a
Aumann, H., Chahine, M., Gautier, C., Goldberg, M., Kalnay, E., McMillin, L., Revercomb, H., Rosenkranz, P., Smith, W., Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003. a
Becker, E. and Vadas, S. L.: Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model, J. Geophys. Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017JD027460, 2018. a, b
Boutle, I. A., Eyre, J. E. J., and Lock, A. P.: Seamless Stratocumulus Simulation across the Turbulent Gray Zone, Mon. Weather Rev., 142, 1655–1668, https://doi.org/10.1175/mwr-d-13-00229.1, 2014. a
Brown, R. A., Lauzon, M. L., and Frayne, R.: A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly, IEEE T. Signal Proces., 58, 281–290, https://doi.org/10.1109/TSP.2009.2028972, 2010. a
Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P. H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S., Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque, J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S., Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.: Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, d05102, https://doi.org/10.1029/2010JD014995, 2011. a, b
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C., Bblaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E., Lambrigtsen, B. H., Lee, S.-y., Le Marshall, J., Mcmillan, W. W., Mcmillin, L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases, B. Am. Meteorol. Soc., 87, 911–926, https://doi.org/10.1175/BAMS-87-7-911, 2006. a
Choi, H.-J. and Chun, H.-Y.: Effects of Convective Gravity Wave Drag in the Southern Hemisphere Winter Stratosphere, J. Atmos. Sci., 70, 2120–2136, https://doi.org/10.1175/JAS-D-12-0238.1, 2013. a
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.: A new dynamical core for the Met Office's global and regional modelling of the atmosphere, Q. J. Roy. Meteor. Soc., 131, 1759–1782, https://doi.org/10.1256/qj.04.101, 2005. a
de la Cámara, A., Lott, F., Jewtoukoff, V., Plougonven, R., and Hertzog, A.: On the Gravity Wave Forcing during the Southern Stratospheric Final Warming in LMDZ, J. Atmos. Sci., 73, 3213–3226, https://doi.org/10.1175/jas-d-15-0377.1, 2016. a, b
de la Torre, A. and Alexander, P.: The Interpretation of Wavelengths and Periods as Measured from Atmospheric Balloons, J. Appl. Meteorol., 34, 2747–2754, https://doi.org/10.1175/1520-0450(1995)034<2747:TIOWAP>2.0.CO;2, 1995. a
de la Torre, A. and Alexander, P.: Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing?, Geophy. Res. Lett., 32, L17 815, https://doi.org/10.1029/2005GL022959, 2005. a
de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., and Wickert, J.: Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?, Geophys. Res. Lett., 33, L24810, https://doi.org/10.1029/2006GL027343, 2006. a
de la Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., and Wickert, J.: Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula, J. Geophys. Res.-Atmos., 117, D02106, https://doi.org/10.1029/2011JD016377, 2012. a
de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., and Hierro, R.: On the distortions in calculated GW parameters during slanted atmospheric soundings, Atmos. Meas. Tech., 11, 1363–1375, https://doi.org/10.5194/amt-11-1363-2018, 2018. a
Eckermann, S. D. and Preusse, P.: Global Measurements of Stratospheric Mountain Waves from Space, Science, 286, 1534–1537, https://doi.org/10.1126/science.286.5444.1534, 1999. a
Ern, M., Preusse, P., Alexander, M. J., and Warner, C. D.: Absolute values of gravity wave momentum flux derived from satellite data, J. Geophys. Res., 109, D20 103, https://doi.org/10.1029/2004JD004752, 2004. a, b
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a, b, c
Fritts, D. C., Riggin, D. M., Balsley, B. B., and Stockwell, R. G.: Recent results with an MF radar at McMurdo, Antarctica: Characteristics and variability of motions near 12-hour period in the mesosphere, Geophy. Res. Lett., 25, 297–300, https://doi.org/10.1029/97GL03702, 1998. a
Fritts, D. C., Vadas, S. L., Wan, K., and Werne, J. A.: Mean and variable forcing of the middle atmosphere by gravity waves, vertical Coupling in the Atmosphere/Ionosphere System, J. Atmos. Solar-Terr. Phy., 68, 247–265, https://doi.org/10.1016/j.jastp.2005.04.010, 2006. a
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Camara, A., and Murphy, D. J.: Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos. Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017. a
Garfinkel, C. I. and Oman, L. D.: Effect of Gravity Waves From Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation, J. Geophys. Res.-Atmos., 123, 1552–1561, https://doi.org/10.1002/2017JD027576, 2018. a, b, c, d
Gille, J., Barnett, J., Whitney, J., Dials, M., Woodard, D., Rudolf, W., Lambert, A., and Mankin, W.: The high resolution dynamics limb sounder (HIRDLS) experiment on aura, in: Infrared Spaceborne Remote Sensing XI, edited by: Strojnik, M., Proceedings of SPIE – The International Society for Optical Engineering, Conference on Infrared Spaceborne Remote Sensing XI, San Diego, CA, 6–8 August 2003, SPIE, 5152, 162–171, https://doi.org/10.1117/12.507657, 2003. a
Goodyear, B. G., Zhu, H. M., Brown, R. A., and Mitchell, J. R.: Removal of phase artifacts from fMRI data using a Stockwell transform filter improves brain activity detection, Magn. Reson. Med., 51, 16–21, https://doi.org/10.1002/mrm.10681, 2004. a
Hendricks, E., Doyle, J., Eckermann, S. D., Jiang, Q., and Reinecke, P.: What Is the Source of the Stratospheric Gravity Wave Belt in Austral Winter?, J. Atmos. Sci., 71, 1583–1592, https://doi.org/10.1175/JAS-D-13-0332.1, 2014. a, b, c
Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., and Cocquerez, P.: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica., J. Atmos. Sci., 65, 3056–3070, https://doi.org/10.1175/2008JAS2710.1, 2008. a
Hierro, R., Steiner, A. K., de la Torre, A., Alexander, P., Llamedo, P., and Cremades, P.: Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events – a case study, Atmos. Meas. Tech., 11, 3523–3539, https://doi.org/10.5194/amt-11-3523-2018, 2018. a
Hindley, N. P.: nhindley/acp-2020-465: Analysis and figure code for ACP journal article acp-2020-465 Hindley et al. (2021) (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4721883, 2021. a
Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J.: The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO, Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, 2015. a, b
Hindley, N. P., Smith, N. D., Wright, C. J., Rees, D. A. S., and Mitchell, N. J.: A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements, Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, 2016. a, b, c, d
Hindley, N. P., Wright, C. J., Smith, N. D., Hoffmann, L., Holt, L. A., Alexander, M. J., Moffat-Griffin, T., and Mitchell, N. J.: Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis, Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Hoffmann, L., Xue, X., and Alexander, M. J.: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416–434, https://doi.org/10.1029/2012JD018658, 2013. a, b
Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, 2016. a, b
Holt, L. A., Alexander, M. J., Coy, L., Liu, C., Molod, A., Putman, W., and Pawson, S.: An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation, Q. J. Roy. Meteor. Soc., 143, 2481–2495, https://doi.org/10.1002/qj.3101, 2017. a
Hu, S., Ma, S., Yan, W., Hindley, N. P., Xu, K., and Jiang, J.: Measuring Gravity Wave Parameters from a Nighttime Satellite Low-Light Image Based on Two-Dimensional Stockwell Transform, J. Atmos. Ocean. Tech., 36, 41–51, https://doi.org/10.1175/JTECH-D-18-0092.1, 2019a. a
Hu, S., Ma, S., Yan, W., Hindley, N. P., and Zhao, X.: Measuring internal solitary wave parameters based on VIIRS/DNB data, Int. J. Remote Sens., 40, 7805–7816, https://doi.org/10.1080/01431161.2019.1608389, 2019b. a
Jackson, D. R., Gadian, A., Hindley, N. P., Hoffmann, L., Hughes, J., King, J., Moffat-Griffin, T., Moss, A. C., Ross, A. N., Vosper, S. B., Wright, C. J., and Mitchell, N. J.: The South Georgia Wave Experiment: A Means for Improved Analysis of Gravity Waves and Low-Level Wind Impacts Generated from Mountainous Islands, B. Am. Meteorol. Soc., 99, 1027–1040, https://doi.org/10.1175/BAMS-D-16-0151.1, 2018. a, b, c, d, e, f, g
Jiang, J. H., Wu, D. L., and Eckermann, S. D.: Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes, J. Geophys. Res., 107, SOL 15-1–SOL 15-10, https://doi.org/10.1029/2002JD002091, 2002. a
Kaifler, N., Kaifler, B., Dörnbrack, A., Rapp, M., Hormaechea, J. L., and de la Torre, A.: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina, Sci. Rep., 10, 14529, https://doi.org/10.1038/s41598-020-71443-7, 2020. a, b
Kim, Y., Eckermann, S. D., and Chun, H.: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models, Atmos.-Ocean, 41, 65–98, https://doi.org/10.3137/ao.410105, 2003. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997. a
Kuyuk, H. S.: On the use of Stockwell transform in structural dynamic analysis, Sadhana-Acad. P. Eng. S., 40, 295–306, https://doi.org/10.1007/s12046-014-0301-2, 2015. a
Lehmann, C. I., Kim, Y.-H., Preusse, P., Chun, H.-Y., Ern, M., and Kim, S.-Y.: Consistency between Fourier transform and small-volume few-wave decomposition for spectral and spatial variability of gravity waves above a typhoon, Atmos. Meas. Tech., 5, 1637–1651, https://doi.org/10.5194/amt-5-1637-2012, 2012. a
Lilienthal, F., Jacobi, C., Schmidt, T., de la Torre, A., and Alexander, P.: On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation, Ann. Geophys., 35, 785–798, https://doi.org/10.5194/angeo-35-785-2017, 2017. a
Llamedo, P., de la Torre, A., Alexander, P., Luna, D., Schmidt, T., and Wickert, J.: A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies, Adv. Space Res., 44, 494–500, https://doi.org/10.1016/j.asr.2009.04.023, https://doi.org/10.1016/j.asr.2009.04.023, 2009. a
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., Schmidt, T., Pazmiño, A., and Quel, E.: 11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America, J. Geophys. Res.-Atmos., 124, 451–467, https://doi.org/10.1029/2018JD028673, 2019. a
McDonald, A. J.: Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations, J. Geophys. Res., 117, D15 106, https://doi.org/10.1029/2011JD016715, 2012. a
McLandress, C., Shepherd, T. G., Polavarapu, S., and Beagley, S. R.: Is Missing Orographic Gravity Wave Drag near 60∘ S the Cause of the Stratospheric Zonal Wind Biases in Chemistry–Climate Models?, J. Atmos. Sci., 69, 802–818, https://doi.org/10.1175/JAS-D-11-0159.1, 2012. a, b, c, d
Meyer, C. I. and Hoffmann, L.: Validation of AIRS high-resolution stratospheric temperature retrievals, Proc. SPIE, 9242, 148–157, https://doi.org/10.1117/12.2066967, 2014. a
Moffat-Griffin, T., Wright, C. J., Moss, A. C., King, J. C., Colwell, S. R., Hughes, J. K., and Mitchell, N. J.: The South Georgia Wave Experiment (SG-WEX): radiosonde observations of gravity waves in the lower stratosphere. Part I: Energy density, momentum flux and wave propagation direction, Q. J. Roy. Meteor. Soc., 143, 3279–3290, https://doi.org/10.1002/qj.3181, 2017. a, b, c, d
Natural Environment Research Council et al.: SG-WEx: a collection of meteor radar observations, radiosondes and numerical modelling output over South Georgia, https://doi.org/10.5285/585b29ba4a054760ac4e53e7d95290b9, 2021. a
Pearson, K. J., Lister, G. M. S., Birch, C. E., Allan, R. P., Hogan, R. J., and Woolnough, S. J.: Modelling the diurnal cycle of tropical convection across the `grey zone', Q. J. Roy. Meteor. Soc., 140, 491–499, https://doi.org/10.1002/qj.2145, 2014. a
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014. a
Plougonven, R., Hertzog, A., and Guez, L.: Gravity waves over Antarctica and the Southern Ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations, Q. J. Roy. Meteor. Soc., 139, 101–118, https://doi.org/10.1002/qj.1965, 2013. a
Plougonven, R., de la Cámara, A., Hertzog, A., and Lott, F.: How does knowledge of atmospheric gravity waves guide their parameterizations?, Q. J. Roy. Meteor. Soc., 146, 1529–1543, https://doi.org/10.1002/qj.3732, 2020. a
Polichtchouk, I. and Scott, R. K.: Spontaneous inertia-gravity wave emission from a nonlinear critical layer in the stratosphere, Q. J. Roy. Meteor. Soc., 146, 1516–1528, https://doi.org/10.1002/qj.3750, 2020. a
Preusse, P., Dörnbrack, A., and Eckermann, S.: Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study, J. Geophys. Res., 107, 8178, https://doi.org/10.1029/2001JD000699, 2002. a
Preusse, P., Ern, M., Bechtold, P., Eckermann, S. D., Kalisch, S., Trinh, Q. T., and Riese, M.: Characteristics of gravity waves resolved by ECMWF, Atmos. Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, 2014. a
Sato, K., Tateno, S., Watanabe, S., and Kawatani, Y.: Gravity Wave Characteristics in the Southern Hemisphere Revealed by a High-Resolution Middle-Atmosphere General Circulation Model., J. Atmos. Sci., 69, 1378–1396, https://doi.org/10.1175/JAS-D-11-0101.1, 2012. a, b
Sato, K., Tsuchiya, C., Alexander, M. J., and Hoffmann, L.: Climatology and ENSO-related interannual variability of gravity waves in the Southern Hemisphere subtropical stratosphere revealed by high-resolution AIRS observations, J. Geophys. Res., 121, 7622–7640, https://doi.org/10.1002/2015JD024462, 2016. a
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model, J. Atmos. Sci., 59, 1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:ioasgw>2.0.co;2, 2002. a
Shutts, G. J. and Vosper, S. B.: Stratospheric gravity waves revealed in NWP model forecasts, Q. J. Roy. Meteor. Soc., 137, 303–317, https://doi.org/10.1002/qj.763, 2011. a
Stockwell, R. G.: A basis for efficient representation of the S-transform, Digital Signal Process., 17, 371–393, https://doi.org/10.1016/j.dsp.2006.04.006, 2007. a
Stockwell, R. G. and Lowe, R. P.: Airglow imaging of gravity waves 1. Results from a small network of OH nightglow scanning imagers, J. Geophys. Res., 106, 17185–17203, https://doi.org/10.1029/2001JD900035, 2001. a
Stockwell, R. G., Mansinha, L., and Lowe, R. P.: Localization of the complex spectrum: the S transform, IEEE T. Signal Proces., 44, 998–1001, https://doi.org/10.1109/78.492555, 1996. a
Stockwell, R. G., Taylor, M. J., Nielsen, K., and Jarvis, M. J.: The evolution of a breaking mesospheric bore wave packet, J. Geophys. Res., 116, D19102, https://doi.org/10.1029/2010JD015321, 2011. a
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741–749, https://doi.org/10.1038/ngeo1296, 2011. a
Vosper, S. B. and Ross, A. N.: Sampling Errors in Observed Gravity Wave Momentum Fluxes from Vertical and Tilted Profiles, Atmosphere, 11, 57, https://doi.org/10.3390/atmos11010057, 2020. a
Vosper, S. B., van Niekerk, A., Elvidge, A., Sandu, I., and Beljaars, A.: What can we learn about orographic drag parametrisation from high-resolution models? A case study over the Rocky Mountains, Q. J. Roy. Meteor. Soc., 146, 979–995, https://doi.org/10.1002/qj.3720, 2020. a
Warner, C. D. and McIntyre, M. E.: On the Propagation and Dissipation of Gravity Wave Spectra through a Realistic Middle Atmosphere, J. Atmos. Sci., 53, 3213–3235, https://doi.org/10.1175/1520-0469(1996)053<3213:OTPADO>2.0.CO;2, 1996. a
Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., Takahashi, M., and Sato, K.: General aspects of a T213L256 middle atmosphere general circulation model, J. Geophys. Res., 113, D12 110, https://doi.org/10.1029/2008JD010026, 2008. a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a
Wright, C. J.: A one-year seasonal analysis of martian gravity waves using MCS data, Icarus, 219, 274–282, https://doi.org/10.1016/j.icarus.2012.03.004, 2012. a
Wright, C. J. and Gille, J. C.: Detecting overlapping gravity waves using the S-Transform, Geophy. Res. Lett., 40, 1850–1855, https://doi.org/10.1002/grl.50378, 2013. a
Wright, C. J. and Hindley, N. P.: How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?, Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, 2018.
a, b, c
Wright, C. J., Hindley, N. P., and Mitchell, N. J.: Combining AIRS and MLS observations for three-dimensional gravity wave measurement, Geophy. Res. Lett., 43, 884–893, https://doi.org/10.1002/2015GL067233, 2015GL067233, 2016a. a
Wright, C. J., Hindley, N. P., Moss, A. C., and Mitchell, N. J.: Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage – Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes, Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, 2016. a, b
Wright, C. J., Hindley, N. P., Hoffmann, L., Alexander, M. J., and Mitchell, N. J.: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage, Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, 2017. a, b, c, d
Wu, D. L.: Mesoscale gravity wave variances from AMSU-A radiances, Geophy. Res. Lett., 31, 1944–8007, https://doi.org/10.1029/2004GL019562, l12114, 2004. a
Yan, A., Zhou, W., Yuan, Q., Yuan, S., Wu, Q., Zhao, X., and Wang, J.: Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG, Epilepsy Behav., 45, 8–14, https://doi.org/10.1016/j.yebeh.2015.02.012, 2015. a
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity...
Altmetrics
Final-revised paper
Preprint