Articles | Volume 13, issue 3
Atmos. Chem. Phys., 13, 1469–1484, 2013
Atmos. Chem. Phys., 13, 1469–1484, 2013

Research article 06 Feb 2013

Research article | 06 Feb 2013

Quantification of structural uncertainty in climate data records from GPS radio occultation

A. K. Steiner1,2, D. Hunt3, S.-P. Ho3, G. Kirchengast1, A. J. Mannucci4, B. Scherllin-Pirscher1,3, H. Gleisner5, A. von Engeln6, T. Schmidt7, C. Ao4, S. S. Leroy8, E. R. Kursinski9, U. Foelsche1, M. Gorbunov10, S. Heise7, Y.-H. Kuo3, K. B. Lauritsen5, C. Marquardt6, C. Rocken3, W. Schreiner3, S. Sokolovskiy3, S. Syndergaard5, and J. Wickert7 A. K. Steiner et al.
  • 1Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), University of Graz, Graz, Austria
  • 2Institute of Remote Sensing and Photogrammetry, Graz University of Technology, Graz, Austria
  • 3COSMIC Project Office, University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA
  • 4Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, USA
  • 5Danish Meteorological Institute (DMI), Copenhagen, Denmark
  • 6EUMETSAT (EUM), Darmstadt, Germany
  • 7Dept. Geodesy and Remote Sensing, German Research Centre for Geosciences (GFZ), Potsdam, Germany
  • 8School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
  • 9Institute of Atmospheric Physics, University of Arizona, Tucson, AZ, USA
  • 10Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russian

Abstract. Global Positioning System (GPS) radio occultation (RO) has provided continuous observations of the Earth's atmosphere since 2001 with global coverage, all-weather capability, and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS). Precise time measurements enable long-term stability but careful processing is needed. Here we provide climate-oriented atmospheric scientists with multicenter-based results on the long-term stability of RO climatological fields for trend studies. We quantify the structural uncertainty of atmospheric trends estimated from the RO record, which arises from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz. Monthly-mean zonal-mean fields of bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature from the CHAMP mission are compared for September 2001 to September 2008. We find that structural uncertainty is lowest in the tropics and mid-latitudes (50° S to 50° N) from 8 km to 25 km for all inspected RO variables. In this region, the structural uncertainty in trends over 7 yr is <0.03% for bending angle, refractivity, and pressure, <3 m for geopotential height of pressure levels, and <0.06 K for temperature; low enough for detecting a climate change signal within about a decade. Larger structural uncertainty above about 25 km and at high latitudes is attributable to differences in the processing schemes, which undergo continuous improvements. Though current use of RO for reliable climate trend assessment is bound to 50° S to 50° N, our results show that quality, consistency, and reproducibility are favorable in the UTLS for the establishment of a climate benchmark record.

Final-revised paper