Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-6647-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6647-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heterogeneous interactions between SO2 and organic peroxides in submicron aerosol
Shunyao Wang
Department of Chemical Engineering and Applied Chemistry,
University of Toronto,
Toronto, Ontario, M5S 3E5, Canada
Tengyu Liu
Department of Chemistry, University of Toronto, Toronto, Ontario,
M5S 3H6, Canada
Jinmyung Jang
Department of Chemical Engineering and Applied Chemistry,
University of Toronto,
Toronto, Ontario, M5S 3E5, Canada
Jonathan P. D. Abbatt
Department of Chemistry, University of Toronto, Toronto, Ontario,
M5S 3H6, Canada
Arthur W. H. Chan
CORRESPONDING AUTHOR
Department of Chemical Engineering and Applied Chemistry,
University of Toronto,
Toronto, Ontario, M5S 3E5, Canada
Related authors
No articles found.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Mutian Ma, Laura-Hélèna Rivellini, YuXi Cui, Megan D. Willis, Rio Wilkie, Jonathan P. D. Abbatt, Manjula R. Canagaratna, Junfeng Wang, Xinlei Ge, and Alex K. Y. Lee
Atmos. Meas. Tech., 14, 2799–2812, https://doi.org/10.5194/amt-14-2799-2021, https://doi.org/10.5194/amt-14-2799-2021, 2021
Short summary
Short summary
Chemical characterization of organic coatings is important to advance our understanding of the physio-chemical properties and atmospheric processing of black carbon (BC) particles. This work develops two approaches to improve the elemental analysis of oxygenated organic coatings using a soot-particle aerosol mass spectrometer. Analyzing ambient data with the new approaches indicated that secondary organics that coated on BC were likely less oxygenated compared to those externally mixed with BC.
Manpreet Takhar, Yunchun Li, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 5137–5149, https://doi.org/10.5194/acp-21-5137-2021, https://doi.org/10.5194/acp-21-5137-2021, 2021
Short summary
Short summary
Our study highlights the importance of molecular composition in constraining the chemical properties of cooking SOA as well as understanding the contribution of aldehydes in formation of SOA from cooking emissions. We show that fragmentation reactions are key in atmospheric processing of cooking SOA, and aldehydes emitted from cooking emissions contribute substantially to SOA formation. Our study provides a framework to better predict SOA formation in and downwind of urban atmospheres.
Cited articles
Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas
uptake to tropospheric aerosol: recent advances and remaining challenges,
Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012.
Adams, J. W., Rodriguez, D., and Cox, R. A.: The uptake of SO2 on Saharan dust: a flow tube study, Atmos. Chem. Phys., 5, 2679–2689, https://doi.org/10.5194/acp-5-2679-2005, 2005.
Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, 2018.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic
compounds, Chem. Rev., 103, 4605–4638, 2003.
Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F.,
Sipilä, M., Kulmala, M., and Herrmann, H.: Gas-phase ozonolysis of
cycloalkenes: Formation of highly oxidized RO2 radicals and their
reactions with NO, NO2, SO2, and other RO2 radicals, J. Phys.
Chem. A, 119, 10336–10348, https://doi.org/10.1021/acs.jpca.5b07295, 2015.
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin,
P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J.,
Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,
Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly oxygenated organic
molecules (HOM) from gas-phase autoxidation involving peroxy radicals: A key
contributor to atmospheric aerosol, Chem. Rev., 119, 3472–3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019.
Bonn, B., von Kuhlmann, R., and Lawrence, M. G.: High contribution of
biogenic hydroperoxides to secondary organic aerosol formation, Geophys.
Res. Lett., 31, L10108, https://doi.org/10.1029/2003GL019172, 2004.
Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T.
G., Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R.,
Pauliquevis, T., Borrmann, S., Pöschl, U., Andreae, M. O., Artaxo, P.,
Jimenez, J. L., and Martin, S. T.: Mass spectral characterization of
submicron biogenic organic particles in the Amazon Basin, Geophys. Res.
Lett., 36, L20806,
https://doi.org/10.1029/2009GL039880, 2009.
Chen, T., Chu, B., Ge, Y., Zhang, S., Ma, Q., He, H., and Li, S.-M.:
Enhancement of aqueous sulfate formation by the coexistence of
NO2/NH3 under high ionic strengths in aerosol water, Environ.
Pollut., 252, 236–244, https://doi.org/10.1016/j.envpol.2019.05.119, 2019.
Cheng, Y. F., Su, H., Koop, T., Mikhailov, E., and Pöschl, U.: Size
dependence of phase transitions in aerosol nanoparticles, Nat. Commun., 6,
5923, https://doi.org/10.1038/ncomms6923, 2015.
Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao,
M., Zhang, Q., He, K. B., Carmichael, G., Pöschl, U., and Su, H.:
Reactive nitrogen chemistry in aerosol water as a source of sulfate during
haze events in China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016.
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid-liquid phase separation in mixed organic/inorganic aerosol particles,
J. Phys. Chem. A, 113, 10966–10978, 2009.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system
H NH Na SO NO Cl H2O
at 298.15 K, J. Phys. Chem. A, 102, 2155–2171,
https://doi.org/10.1021/jp973043j, 1998.
Clegg, S. L., Kleeman, M. J., Griffin, R. J., and Seinfeld, J. H.: Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model – Part 1: Treatment of inorganic electrolytes and organic compounds in the condensed phase, Atmos. Chem. Phys., 8, 1057–1085, https://doi.org/10.5194/acp-8-1057-2008, 2008.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving factors in Beijing, Atmos. Chem. Phys., 19, 7939–7954, https://doi.org/10.5194/acp-19-7939-2019, 2019.
Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of
organic peroxides to secondary aerosol formed from reactions of monoterpenes
with O3, Environ. Sci. Technol., 39, 4049–4059, 2005.
Dovrou, E., Rivera-Rios, J. C., Bates, K. H., and Keutsch, F. N.: Sulfate
formation via cloud processing from isoprene hydroxyl hydroperoxides
(ISOPOOH), Environ. Sci. Technol., 53, 12476-12484, https://doi.org/10.1021/acs.est.9b04645,
2019.
Drozd, G. T., Woo, J. L., and McNeill, V. F.: Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid–liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides, Atmos. Chem. Phys., 13, 8255–8263, https://doi.org/10.5194/acp-13-8255-2013, 2013.
Epstein, S. A., Blair, S. L., and Nizkorodov, S. A.: Direct photolysis of
α-pinene ozonolysis secondary organic aerosol: effect on particle
mass and peroxide content, Environ. Sci. Technol., 48, 11251–11258, 2014.
Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999–4012, https://doi.org/10.5194/acp-10-3999-2010, 2010.
Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken, T., Fischer, M., Matías, E., Moya, M., Farmer, D., and Cohen, R. C.: Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006, Atmos. Chem. Phys., 9, 2141–2156, https://doi.org/10.5194/acp-9-2141-2009, 2009.
Freedman, M. A.: Phase separation in organic aerosol, Chem. Soc. Rev., 46,
7694–7705, https://doi.org/10.1039/C6CS00783J, 2017.
Fu, H. B., Wang, X., Wu, H. B., Yin, Y., and Chen, J. M.: Heterogeneous
uptake and oxidation of SO2 on iron oxides, J. Phys. Chem. C, 111,
6077–6085, 2007.
Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, 2016.
Gaston, C. J., Riedel, T. P., Zhang, Z., Gold, A., Surratt, J. D., and
Thornton, J. A.: Reactive uptake of an isoprene-derived epoxydiol to
submicron aerosol particles, Environ. Sci. Technol., 48, 11178–11186, https://doi.org/10.1021/es5034266, 2014.
Gen, M., Zhang, R., Huang, D. D., Li, Y., and Chan, C. K.: Heterogeneous
SO2 oxidation in sulfate formation by photolysis of particulate
nitrate, Environ. Sci. Technol. Lett., 6, 86–91,
https://doi.org/10.1021/acs.estlett.8b00681, 2019.
Griffiths, P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., and
Mentel, T. F.: Reactive uptake of N2O5 by aerosols containing
dicarboxylic acids. Effect of particle phase, composition, and nitrate
content, J. Phys. Chem. A, 113, 5082-5090, https://doi.org/10.1021/jp8096814, 2009.
Gunz, D. W. and Hoffmann, M. R.: Atmospheric chemistry of peroxides: A
review, Atmos. Environ., 24A, 1601–1633,
https://doi.org/10.1016/0960-1686(90)90496-A, 1990.
Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C.,
LopezHilfiker, F. D., Dibb, J. E., Jimenez, J. L., Thornton, J. A., Brown,
S. S., Nenes, A., and Weber, R. J.: Fine particle pH and the partitioning of
nitric acid during winter in the northeastern United States, J. Geophys.
Res.-Atmos., 121, 10355–10376, https://doi.org/10.1002/2016JD025311, 2016.
Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise
fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate
production, Sci. Rep., 7, 12109, https://doi.org/10.1038/s41598-017-11704-0, 2017.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Halperin, J. and Taube, H.: The transfer of oxygen atoms in
oxidation – reduction reactions. IV. The reaction of hydrogen peroxide with
sulfite and thiosulfate, and of oxygen, manganese dioxide and of
permanganate with sulfite, J. Am. Chem. Soc., 74, 380–382, 1952.
Hanson, D. R., Ravishankara, A. R., and Solomon, S.: Heterogeneous reactions
in sulfuric acid aerosols: A framework for model calculations, J. Geophys.
Res., 99, 3615, https://doi.org/10.1029/93JD02932, 1994.
Hartz, K. E. H., Rosenorn, T., Ferchak, S. R., Raymond, T. M., Bilde, M.,
Donahue, N. M., and Pandis, S. N.: Cloud condensation nuclei activation of
monoterpene and sesquiterpene
secondary organic aerosol, J. Geophys. Res.-Atmos., 110, D14208, https://doi.org/10.1029/2004JD005754, 2005.
He, L.-Y., Huang, X.-F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., and
Zhang, Y.-H.: Submicron aerosol analysis and organic source apportionment in
an urban atmosphere
in Pearl River Delta of China using high-resolution aerosol mass
spectrometry, J. Geophys. Res. Atmos., 116, D12304,
https://doi.org/10.1029/2010JD014566, 2011.
Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric
chemistry, Chem. Rev., 103, 4691–4716, 2003.
Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973–2986, https://doi.org/10.5194/acp-9-2973-2009, 2009.
Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., and Li, L.: Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 14311–14328, https://doi.org/10.5194/acp-19-14311-2019, 2019a.
Huang, L. B., Coddens, E. M., and Grassian, V. H.: Formation of organosulfur
compounds from aqueous phase reactions of S (IV) with methacrolein and
methyl vinyl ketone in the presence of transition metal ions, ACS Earth
Space Chem., 3, 1749–1755, 2019.
Huang, L. B., Liu, T. and Grassian, V. H.: Radical-initiated formation of
aromatic organosulfates and sulfonates in the aqueous phase, Environ. Sci.
Technol., 54, 11857–11864, 2020.
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prevot, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222, 2014.
Huang, R. J., He, Y., Duan, J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Hu, W., Lin, C., Ni, H., Dai, W., Cao, J., Wu, Y., Zhang, R., Xu, W., Ovadnevaite, J., Ceburnis, D., Hoffmann, T., and O'Dowd, C. D.: Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing, Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, 2020.
Hung, H. M. and Hoffmann, M. R.: Oxidation of gas-phase SO2 on the
surfaces of acidic microdroplets: Implications for sulfate and sulfate
radical anion formation in the atmospheric liquid phase, Environ. Sci.
Technol., 49, 13768–13776, 2015.
Hung, H. M., Hsu, M. N., and Hoffmann, M. R.: Quantification of SO2
oxidation on interfacial surfaces of acidic micro-droplets: Implication for
ambient sulfate formation, Environ. Sci. Technol., 52, 9079–9086,
https://doi.org/10.1021/acs.est.8b01391, 2018.
Jang, M. and Kamens, R. M.: Atmospheric secondary aerosol formation by
heterogeneous reactions of aldehydes in the presence of a sulfuric acid
aerosol catalyst, Environ. Sci. Technol., 35, 4758–4766, https://doi.org/10.1021/es010790s,
2001.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R.,
Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen,
T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M.,
Collins, D. R., Cubison, M. J., Dunlea, J., Huffman, J. A., Onasch, T. B.,
Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J.,
Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L.,
Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.
Y., Zhang, Y. M., Dzepina, K., Kimmel,
J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams,
L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and
Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science,
326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kautzman, K., Surratt, J., Chan, M., Chan, A., Hersey, S., Chhabra, P.,
Dalleska, N., Wennberg, P., Flagan, R., and Seinfeld, J.: Chemical
composition of gas-and aerosol-phase products from the photooxidation of
naphthalene, J. Phys. Chem. A, 114, 913–934, 2009.
Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J.,
Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and
simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols,
Science, 288, p. 301, https://doi.org/10.1126/science.288.5464.301, 2000.
Krapf, M., El Haddad, I., Bruns, E. A., Molteni, U., Daellenbach, K. R.,
Prévôt, A. S., Baltensperger, U., and Dommen, J.: Labile peroxides
in secondary organic aerosol, Chem, 1, 603–616, 2016.
Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S.
D., and Finlayson-Pitts, B. J.: Reactions at interfaces as a source of
sulfate formation in sea-salt particles, Science, 301, p. 340, https://doi.org/10.1126/science.1085374, 2003.
Leng, C. B., Roberts, J. E., Zeng, G., Zhang, Y. H., and Liu, Y.: Effects of
temperature, pH, and ionic strength on the Henry's law constant of
triethylamine, Geophys. Res. Lett., 42, 3569–3575, https://doi.org/10.1002/2015gl063840,
2015.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, J., Zhang, Y.L., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski,
G.: Stable sulfur isotopes revealed a major role of transition-metal
ion-catalyzed SO2 oxidation in haze episodes, Environ. Sci. Technol.,
54, 2626–2634, https://doi.org/10.1021/acs.est.9b07150, 2020.
Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of
sulfur (IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic
acid, J. Geophys. Res.-Atmos., 92, 4171–4177, 1987.
Liu, C., Chen, T., Liu, Y., Liu, J., He, H., and Zhang, P.: Enhancement of secondary organic aerosol formation and its oxidation state by SO2 during photooxidation of 2-methoxyphenol, Atmos. Chem. Phys., 19, 2687–2700, https://doi.org/10.5194/acp-19-2687-2019, 2019.
Liu, L., Bei, N., Wu, J., Liu, S., Zhou, J., Li, X., Yang, Q., Feng, T., Cao, J., Tie, X., and Li, G.: Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China, Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019, 2019.
Liu, T., Clegg, S. L., and Abbatt, J. P. D.: Fast oxidation of sulfur dioxide
by hydrogen peroxide
in deliquesced aerosol particles, P. Natl. Acad. Sci. USA, 117,
1354–1359, 2020.
Liu, Y., Liggio, J., Staebler, R., and Li, S.-M.: Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, 2015.
Maaß, F., Elias, H., and Wannowius, K. J.: Kinetics of the oxidation of
hydrogen sulfite by hydrogen peroxide in aqueous solution: ionic strength
effects and temperature dependence, Atmos. Environ., 33, 4413–4419,
https://doi.org/10.1016/S1352-2310(99)00212-5, 1999.
Mauldin, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä,
T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V. M., and Kulmala,
M.: A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488,
193–196, https://doi.org/10.1038/nature11278, 2012.
Mekic, M., Loisel, G., Zhou, W., Jiang, B., Vione, D., and Gligorovski, S.:
Ionic-strength effects on the reactive uptake of ozone on aqueous pyruvic
acid: Implications for air–sea ozone deposition, Environ. Sci. Technol.,
52, 12306–12315, https://doi.org/10.1021/acs.est.8b03196, 2018.
Mekic, M., Zeng, J., Zhou, W., Loisel, G., Jin, B., Li, X., Vione, D., and
Gligorovski, S.: Ionic strength effect on photochemistry of fluorene and
dimethylsulfoxide at the air–sea interface: Alternative formation pathway
of organic sulfur compounds in a marine atmosphere, ACS Earth Space Chem.,
4, 1029–1038, https://doi.org/10.1021/acsearthspacechem.0c00059, 2020.
Mishra, H., Enami, S., Nielsen, R. J., Hoffmann, M. R., Goddard, W. A., and
Colussi, A. J.: Anions dramatically enhance proton transfer through aqueous
interfaces, P. Natl. Acad. Sci. USA, 109, 10228–10232, 2012.
Newland, M. J., Rickard, A. R., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide, Atmos. Chem. Phys., 15, 9521–9536, https://doi.org/10.5194/acp-15-9521-2015, 2015.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3), Atmos. Chem. Phys., 8, 4117–4140, https://doi.org/10.5194/acp-8-4117-2008, 2008.
Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H.,
Schwantes, R. H., Coggon, M. M., Zhang, L., Feiner, P., Milller, D. O.,
Skog, K. M., Rivera-Rios, J. C., Dorris, M., Olson, K. F., Koss, A., Wild,
R. J., Brown, S. S., Goldstein, A. H., de Gouw, J. A., Brune,
W. H., Keutsch, F. N., Seinfeld, J. H., and Wennberg, P. O.: Atmospheric
fates of Criegee intermediates in the ozonolysis of isoprene, Phys. Chem.
Chem. Phys., 18, 10241–10254, https://doi.org/10.1039/C6CP00053C,
2016.
O'Brien, R. E., Wang, B., Kelly, S. T., Lundt, N., You, Y., Bertram, A. K.,
Leone, S. R., Laskin, A., and Gilles, M. K.: Liquid–liquid phase separation
in aerosol particles: Imaging at the nanometer scale, Environ. Sci.
Technol., 49, 4995-5002, https://doi.org/10.1021/acs.est.5b00062, 2015.
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, 2008.
Qiu, J., Liang, Z., Tonokura, K., Colussi, A. J., and Enami, S.: Stability
of monoterpene-derived α-hydroxyalkyl-hydroperoxides in aqueous
qrganic media – relevance to the fate of hydroperoxides in aerosol particle
phases, Environ. Sci. Technol., 54, 3890–3899, https://doi.org/10.1021/acs.est.9b07497, 2020.
Rodríguez-Sevilla, J., Álvarez, M., Limiñana, G., Díaz, M.
C.: Dilute SO2 absorption equilibria in aqueous HCl and NaCl solutions
at 298.15 K, J. Chem. Eng. Data, 47, 1339–1345, 2002.
Ruiz-Lopez, M. F., Francisco, J. S., Martins-Costa, M. T., and Anglada, J. M.:
Molecular reactions at aqueous interfaces, Nat. Rev. Chem., 4, 459–475, 2020.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, 2012.
Sha, T., Ma, X., Jia, H., Tian, R., Chang, Y., Cao, F., and Zhang, Y.:
Aerosol chemical component: Simulations with WRF-Chem and comparison with
observations in Nanjing, Atmos. Environ., 218, 116982,
https://doi.org/10.1016/j.atmosenv.2019.116982, 2019.
Shang, J., Li, J., Zhu, T.: Heterogeneous reaction of SO2 on TiO2
particles, Sci. China Chem., 53, 2637–2643, 2010.
Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y.,
Yu, H., Nenes, A., and Russell, A. G.: pH of aerosols in a polluted
atmosphere: Source contributions to highly acidic aerosol, Environ. Sci.
Technol., 51, 4289–4296, https://doi.org/10.1021/acs.est.6b05736, 2017.
Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R., and Kolb, C. E.:
Uptake of gas-phase ammonia. 1. Uptake by aqueous surfaces as a function of
pH, J. Phys. Chem. A, 103, 8812–8823, https://doi.org/10.1021/jp991696p, 1999.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid–liquid phase separation in aerosol particles: dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett.,
39, L19801, https://doi.org/10.1029/2012GL052807, 2012.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, 2018.
Song, S., Gao, M., Xu, W., Sun, Y., Worsnop, D. R., Jayne, J. T., Zhang, Y., Zhu, L., Li, M., Zhou, Z., Cheng, C., Lv, Y., Wang, Y., Peng, W., Xu, X., Lin, N., Wang, Y., Wang, S., Munger, J. W., Jacob, D. J., and McElroy, M. B.: Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze, Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, 2019.
Su, H., Cheng, Y., and Pöschl, U.: New multiphase chemical processes
influencing atmospheric aerosols, air quality, and climate in the
anthropocene, Accounts Chem. Res., 53, 2034–2043,
https://doi.org/10.1021/acs.accounts.0c00246, 2020.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The
impact of relative humidity on aerosol composition and evolution processes
during wintertime in Beijing, China, Atmos. Environ., 77, 927–934, 2013.
Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L.,
Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., and Claeys,
M.: Chemical composition of secondary organic aerosol formed from the
photooxidation of isoprene, J. Phys. Chem. A, 110, 9665–9690, 2006.
Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N2O5
hydrolysis on sub-micron organic aerosols: the effect of relative humidity,
particle phase, and particle size, Phys. Chem. Chem Phys., 5, 4593–4603,
https://doi.org/10.1039/B307498F, 2003.
Tie, X., Brasseur, G., Emmons, L., Horowitz, I., and Kinnison, D.: Effects
of aerosols on tropospheric oxidants: a global model study, J. Geophys. Res.-Atmos., 106, 22931–22964, 2001.
Tong, H., Arangio, A. M., Lakey, P. S. J., Berkemeier, T., Liu, F., Kampf, C. J., Brune, W. H., Pöschl, U., and Shiraiwa, M.: Hydroxyl radicals from secondary organic aerosol decomposition in water, Atmos. Chem. Phys., 16, 1761–1771, https://doi.org/10.5194/acp-16-1761-2016, 2016.
Usher, C. R., Al-Hosney, H., Carlos-Cuellar, S., and Grassian,V. H.: A
laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide
on mineral dust particles, J. Geophys. Res., 107, 4713,
https://doi.org/10.1029/2002JD002051, 2002.
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
Veghte, D. P., Altaf, M. B., and Freedman, M. A.: Size dependence of the
structure of organic aerosol, J. Am. Chem. Soc., 135, 16046–16049, 2013.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y.,
Peng, J., Guo, S., and Meng, J.: Persistent sulfate formation from London
Fog to Chinese haze, P. Natl. Acad. Sci. USA, 113, 13630–13635,
2016.
Wang, S., Ye, J., Soong, R., Wu, B., Yu, L., Simpson, A. J., and Chan, A. W. H.: Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons, Atmos. Chem. Phys., 18, 3987–4003, https://doi.org/10.5194/acp-18-3987-2018, 2018.
Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G.,
McNeill, V. F., Abbatt, J. P. D., and Chan, A. W. H.: Organic peroxides and
sulfur dioxide in aerosol: Source of particulate sulfate, Environ. Sci.
Technol., 53, 10695–10704, https://doi.org/10.1021/acs.est.9b02591, 2019.
Wang, X., Gemayel, R., Hayeck, N., Perrier, S., Charbonnel, N., Xu, C.,
Chen, H., Zhu, C., Zhang, L., Wang, L., Nizkorodov, S. A., Wang, X., Wang,
Z., Wang, T., Mellouki, A., Riva, M., Chen, J., and George, C.: Atmospheric
photosensitization: A new pathway for sulfate formation, Environ. Sci.
Technol., 54, 3114–3120, 2020.
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang,
Q., Philip, S., and Xie, Y.: Enhanced sulfate formation during China's
severe winter haze episode in January 2013 missing from current models, J.
Geophys. Res.-Atmos., 119, 10425–10440, 2014.
Wei, H., Vejerano, E. P., Leng, W., Huang, Q., Willner, M. R., Marr, L. C.,
and Vikesland, P. J.: Aerosol microdroplets exhibit a stable pH gradient,
P. Natl. Acad. Sci. USA, 115, 7272, https://doi.org/10.1073/pnas.1720488115, 2018.
Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M.,
Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., and Knote, C.: Effects
of anthropogenic emissions on aerosol formation from isoprene and
monoterpenes in the southeastern United States,P. Natl. Acad. Sci. USA, 112, 37–42, 2015.
Yang, Y., Wang, H., Smith, S. J., Easter, R., Ma, P.-L., Qian, Y., Yu, H., Li, C., and Rasch, P. J.: Global source attribution of sulfate concentration and direct and indirect radiative forcing, Atmos. Chem. Phys., 17, 8903–8922, https://doi.org/10.5194/acp-17-8903-2017, 2017.
Yao, M., Zhao, Y., Hu, M., Huang, D., Wang, Y.C., Yu, J. Z., and Yan, N.:
Multiphase reactions between secondary organic aerosol and sulfur dioxide:
kinetics and contributions to sulfate formation and aerosol aging, Environ.
Sci. Technol. Lett. 6, 768–774, 2019.
Ye, J., Gordon, C. A., and Chan, A. W. H: Enhancement in secondary organic
aerosol formation in the presence of preexisting organic particle, Environ.
Sci. Technol., 50, 3572–3579, 2016.
Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
Yee, L. D., Isaacman-VanWertz, G., Wernis, R. A., Kreisberg, N. M., Glasius,
M., Riva, M., Surratt, J. D., de Sá, S. S., Martin, S. T., Alexander, M.
L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L.,
Liu, Y., Misztal, P. K., Artaxo, P., Viegas, J., Manzi, A., de Souza, R. A.
F., Edgerton, E. S., Baumann, K., and Goldstein, A. H.: Natural and
anthropogenically influenced isoprene oxidation in southeastern United
States and central Amazon, Environ. Sci. Technol., 54, 5980–5991, https://doi.org/10.1021/acs.est.0c00805, 2020.
You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride, Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, 2013.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem.,
33, 43–77, https://doi.org/10.1080/0144235X.2014.890786, 2014.
Zhang, S., Xing, J., Sarwar, G., Ge, Y., He, H., Duan, F., Zhao, Y., He, K.,
Zhu, L., and Chu, B.: Parameterization of heterogeneous reaction of SO2
to sulfate on dust with coexistence of NH3 and NO2 under different
humidity conditions, Atmos. Environ., 208, 133–140, 2019.
Zhao, Y., Liu, Y., Ma, J., Ma, Q., and He, H.: Heterogeneous reaction of
SO2 with soot: The roles of relative humidity and surface composition
of soot in surface sulfate formation, Atmos. Environ., 152, 465–476, 2017.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Zheng, G. J., Su, H., Wang, S., Andreae, M. O., Pöschl, U., and Cheng, Y.:
Multiphase buffer theory explains contrasts in atmospheric aerosol acidity,
Science, 369, 1374–1377, https://doi.org/10.1126/science.aba3719, 2020.
Short summary
Discrepancies between atmospheric modeling and field observations, especially in highly polluted cities, have highlighted the lack of understanding of sulfate formation mechanisms and kinetics. Here, we directly quantify the reactive uptake coefficient of SO2 onto organic peroxides and study the important governing factors. The SO2 uptake rate was observed to depend on RH, peroxide amount and reactivity, pH, and ionic strength, which provides a framework to better predict sulfate formation.
Discrepancies between atmospheric modeling and field observations, especially in highly polluted...
Altmetrics
Final-revised paper
Preprint