Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8989-2020
https://doi.org/10.5194/acp-20-8989-2020
Research article
 | 
29 Jul 2020
Research article |  | 29 Jul 2020

Differences in tropical high clouds among reanalyses: origins and radiative impacts

Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao

Related authors

iPyCLES v1.0: A New Isotope-Enabled Large-Eddy Simulator for Mixed-Phase Clouds
Zizhan Hu, Yiran Peng, Mengke Zhu, and Jonathon S. Wright
EGUsphere, https://doi.org/10.5194/egusphere-2024-828,https://doi.org/10.5194/egusphere-2024-828, 2024
Short summary
Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
EGUsphere, https://doi.org/10.5194/egusphere-2023-2917,https://doi.org/10.5194/egusphere-2023-2917, 2023
Short summary
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021,https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020,https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Surface temperature response to the major volcanic eruptions in multiple reanalysis data sets
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020,https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024,https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024,https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024,https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024,https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024,https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary

Cited articles

Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res.-Atmos., 120, 7534–7554, https://doi.org/10.1002/2015JD023182, 2015. a
AERIS: Données et Services Pour l'Atmosphère, available at: https://www.aeris-data.fr, last access: 24 July 2020. a
Anber, U., Wang, S., and Sobel, A.: Response of atmospheric convection to vertical wind shear: Cloud-system-resolving simulations with parameterized large-scale circulation. Part II: Effect of interactive radiation, J. Atmos. Sci., 73, 199–209, https://doi.org/10.1175/JAS-D-15-0151.1, 2016. a
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, part I, J. Atmos. Sci., 31, 674–701, 1974. a, b
Bacmeister, J. T. and Stephens, G. L.: Spatial statistics of likely convective clouds in CloudSat data, J. Geophys. Res.-Atmos., 116, D04104, https://doi.org/10.1029/2010JD014444, 2011. a, b
Download
Short summary
High clouds are influential in tropical climate. Although reanalysis cloud fields are essentially model products, they are indirectly constrained by observations and offer global coverage with direct links to advanced water and energy cycle metrics, giving them many useful applications. We describe how high cloud fields are generated in reanalyses, assess their realism and reliability in the tropics, and evaluate how differences in these fields affect other aspects of the reanalysis state.
Altmetrics
Final-revised paper
Preprint