Articles | Volume 20, issue 7
https://doi.org/10.5194/acp-20-4477-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4477-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of SO2 on optical properties of secondary organic aerosol generated from photooxidation of toluene under different relative humidity conditions
Wenyu Zhang
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
Junling Li
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
Chao Peng
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
now at: State Key Laboratory of Organic Geochemistry, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
Air Quality Research Division, Environment and Climate Change Canada,
Toronto, Ontario M3H 5T4, Canada
now at: Laboratory of Atmospheric Chemistry, Paul Scherrer
Institute (PSI), 5232 Villigen, Switzerland
Li Zhou
College of Architecture and Environment, Sichuan University, Chengdu,
China
Bo Shi
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
Yan Chen
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
Mingyuan Liu
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
State Key Laboratory for Structural Chemistry of Unstable and
Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS),
CAS Research/Education Center for Excellence in Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China
University of Chinese Academy of Sciences, Beijing 100049,
China
Center for Excellence in Regional Atmospheric Environment,
Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021,
China
Related authors
Junling Li, Weigang Wang, Kun Li, Wenyu Zhang, Chao Peng, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 20, 8123–8137, https://doi.org/10.5194/acp-20-8123-2020, https://doi.org/10.5194/acp-20-8123-2020, 2020
Short summary
Short summary
Long-chain alkanes (a large fraction of diesel fuel and its exhaust) are important potential contributors of SOA. Through the analysis of the components of formed SOA, we found that low-temperature conditions promote the oligomerization of n-dodecane, and the degree of oligomerization can reach tetramerization. The presence of the oligomers enhances the light extinction of the particles. UV-scattering particles in the boundary layer can accelerate photochemical reactions and haze production.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3678, https://doi.org/10.5194/egusphere-2024-3678, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
Atmos. Chem. Phys., 24, 13183–13198, https://doi.org/10.5194/acp-24-13183-2024, https://doi.org/10.5194/acp-24-13183-2024, 2024
Short summary
Short summary
The photolysis rate constant of particulate nitrate for HONO production (JNO3−–HONO), derived from PM2.5 samples collected at five representative sites in China, exhibited a wide range of variation. A parameterization equation relating JNO3−–HONO to OC/NO3− has been established and can be used to estimate JNO3−–HONO in different environments. Our work provides an important reference for research in other regions of the world where aerosol samples have a high proportion of organic components.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1161, https://doi.org/10.5194/egusphere-2024-1161, 2024
Short summary
Short summary
Our study analyzes real-time emissions of primary organic gases from solid fuel combustion, including residential and open burning. Using Vocus-PTR-TOF, we tested various fuels, finding higher emissions from wood burning. Statistical tests identified unique characteristic compounds. IVOCs are key precursors to SOA formation, particularly in open burning. Our insights benefit air quality, climate, and health, advancing atmospheric chemistry and aiding accurate emission assessments.
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-367, https://doi.org/10.5194/egusphere-2024-367, 2024
Short summary
Short summary
In recent years, the concentration of atmospheric particulate matter in China decreased significantly, but the ozone concentration showed a fluctuating upward trend, the atmospheric oxidation capacity increased significantly, especially in the warm season. Given the contribution of HONO to atmospheric oxidation capacity, its sources should be studied in more detail.
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022, https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary
Short summary
Ozone formation is enhanced by higher OH concentration and higher temperature but is influenced little by SO2. SO2 can largely enhance the particle formation. Organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. The results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere.
Jingwei Zhang, Chaofan Lian, Weigang Wang, Maofa Ge, Yitian Guo, Haiyan Ran, Yusheng Zhang, Feixue Zheng, Xiaolong Fan, Chao Yan, Kaspar R. Daellenbach, Yongchun Liu, Markku Kulmala, and Junling An
Atmos. Chem. Phys., 22, 3275–3302, https://doi.org/10.5194/acp-22-3275-2022, https://doi.org/10.5194/acp-22-3275-2022, 2022
Short summary
Short summary
This study added six potential HONO sources to the WRF-Chem model, evaluated their impact on HONO and O3 concentrations, including surface and vertical concentrations. The simulations extend our knowledge on atmospheric HONO sources, especially for nitrate photolysis. The study also explains the HONO difference in O3 formation on clean and hazy days, and reveals key potential HONO sources to O3 enhancements in haze-aggravating processes with a co-occurrence of high PM2.5 and O3 concentrations.
Junling Li, Hong Li, Kun Li, Yan Chen, Hao Zhang, Xin Zhang, Zhenhai Wu, Yongchun Liu, Xuezhong Wang, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 21, 7773–7789, https://doi.org/10.5194/acp-21-7773-2021, https://doi.org/10.5194/acp-21-7773-2021, 2021
Short summary
Short summary
SOA formation from the mixed anthropogenic volatile organic compounds was enhanced compared to the predicted SOA mass concentration based on the SOA yield of single species; interaction occurred between intermediate products from the two precursors. Interactions between the intermediate products from the mixtures and the effect on SOA formation give us a further understanding of the SOA formed in the atmosphere.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Yongchun Liu, Yusheng Zhang, Chaofan Lian, Chao Yan, Zeming Feng, Feixue Zheng, Xiaolong Fan, Yan Chen, Weigang Wang, Biwu Chu, Yonghong Wang, Jing Cai, Wei Du, Kaspar R. Daellenbach, Juha Kangasluoma, Federico Bianchi, Joni Kujansuu, Tuukka Petäjä, Xuefei Wang, Bo Hu, Yuesi Wang, Maofa Ge, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, https://doi.org/10.5194/acp-20-13023-2020, 2020
Short summary
Short summary
Understanding of the chemical and physical processes leading to atmospheric aerosol particle formation is crucial to devising effective mitigation strategies to protect the public and reduce uncertainties in climate predictions. We found that the photolysis of nitrous acid could promote the formation of organic and nitrate aerosol and that traffic-related emission is a major contributor to ambient nitrous acid on haze days in wintertime in Beijing.
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech., 13, 5551–5567, https://doi.org/10.5194/amt-13-5551-2020, https://doi.org/10.5194/amt-13-5551-2020, 2020
Short summary
Short summary
We present the design of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce comprehensive methods for system calibration and validation of the performance of the system. We then study the size dependence of the deliquescence and the efflorescence of aerosol nanoparticles for sizes down to 6 nm.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Junling Li, Weigang Wang, Kun Li, Wenyu Zhang, Chao Peng, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 20, 8123–8137, https://doi.org/10.5194/acp-20-8123-2020, https://doi.org/10.5194/acp-20-8123-2020, 2020
Short summary
Short summary
Long-chain alkanes (a large fraction of diesel fuel and its exhaust) are important potential contributors of SOA. Through the analysis of the components of formed SOA, we found that low-temperature conditions promote the oligomerization of n-dodecane, and the degree of oligomerization can reach tetramerization. The presence of the oligomers enhances the light extinction of the particles. UV-scattering particles in the boundary layer can accelerate photochemical reactions and haze production.
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019, https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Alex K. Y. Lee, Max G. Adam, John Liggio, Shao-Meng Li, Kun Li, Megan D. Willis, Jonathan P. D. Abbatt, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, Kevin Strawbridge, and Jeffery R. Brook
Atmos. Chem. Phys., 19, 12209–12219, https://doi.org/10.5194/acp-19-12209-2019, https://doi.org/10.5194/acp-19-12209-2019, 2019
Short summary
Short summary
This work provides the first direct field evidence that anthropogenic organo-nitrate contributed up to half of secondary organic aerosol (SOA) mass that was freshly produced within the emission plumes of oil sands facilities in Alberta, Canada. The findings illustrate the central role of organo-nitrate in SOA production from the oil and gas industry, with relevance for other urban and industrial regions with significant intermediate-volatility organic compounds (IVOCs) and NOx emissions.
Siyang Li, Xiaotong Jiang, Marie Roveretto, Christian George, Ling Liu, Wei Jiang, Qingzhu Zhang, Wenxing Wang, Maofa Ge, and Lin Du
Atmos. Chem. Phys., 19, 9887–9902, https://doi.org/10.5194/acp-19-9887-2019, https://doi.org/10.5194/acp-19-9887-2019, 2019
Short summary
Short summary
We stimulated the photochemical aging of organic film coated on aqueous aerosol in the presence of imidazole-2-carboxaldehyde, humic acid, an atmospheric PM2.5 sample, and a secondary organic aerosol sample from the lab. The unsaturated lipid mixed with photosensitizer under UV irradiation produced hydroperoxides, leading to surface area increase in organic film. Our results reveal the modification of organic film on aqueous aerosol has potential influence on the hygroscopic growth of droplets.
Kun Li, John Liggio, Patrick Lee, Chong Han, Qifan Liu, and Shao-Meng Li
Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, https://doi.org/10.5194/acp-19-9715-2019, 2019
Short summary
Short summary
A new oxidation flow reactor was developed and applied to study the secondary organic aerosol (SOA) formation from precursors associated with oil-sands (OS) operations. The results reveal that the SOA yields from OS precursors are related to the volatilities of precursors and that open-pit mining is the main source of SOA formed from oil sands. In addition, cyclic alkanes are found to play an important role in SOA formation from oil-sands precursors.
Kun Li, Junling Li, Shengrui Tong, Weigang Wang, Ru-Jin Huang, and Maofa Ge
Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, https://doi.org/10.5194/acp-19-8021-2019, 2019
Short summary
Short summary
Wintertime volatile organic compounds (VOCs) in suburban and urban Beijing were measured. Urban VOC concentrations were much higher than suburban ones, but the emission features were similar. The photochemical processes were more active in the urban site, resulting in the high daytime formation of oxygenated VOCs. In addition, human activities during holidays can largely influence the VOC levels. These results are helpful in better understanding the atmospheric chemistry of VOCs in Beijing.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Li Xing, Jiarui Wu, Miriam Elser, Shengrui Tong, Suixin Liu, Xia Li, Lang Liu, Junji Cao, Jiamao Zhou, Imad El-Haddad, Rujin Huang, Maofa Ge, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 19, 2343–2359, https://doi.org/10.5194/acp-19-2343-2019, https://doi.org/10.5194/acp-19-2343-2019, 2019
Short summary
Short summary
We used the WRF-CHEM model to simulate wintertime secondary organic aerosol (SOA) concentrations over Beijing–Tianjin–Hebei (BTH), China. Heterogeneous HONO sources increased the near-surface SOA by 46.3 % in BTH. Direct emissions of glyoxal and methylglyoxal from residential sources contributed 25.5 % to the total SOA mass. Our study highlights the importance of heterogeneous HONO sources and primary residential emissions of glyoxal and methylglyoxal to SOA formation in winter over BTH.
Liya Guo, Wenjun Gu, Chao Peng, Weigang Wang, Yong Jie Li, Taomou Zong, Yujing Tang, Zhijun Wu, Qinhao Lin, Maofa Ge, Guohua Zhang, Min Hu, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, https://doi.org/10.5194/acp-19-2115-2019, 2019
Short summary
Short summary
In this work, hygroscopic properties of eight Ca- and Mg-containing salts were systematically investigated using two complementary techniques. The results largely improve our knowledge of the physicochemical properties of mineral dust and sea salt aerosols.
Yiqun Lu, Chao Yan, Yueyun Fu, Yan Chen, Yiliang Liu, Gan Yang, Yuwei Wang, Federico Bianchi, Biwu Chu, Ying Zhou, Rujing Yin, Rima Baalbaki, Olga Garmash, Chenjuan Deng, Weigang Wang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Lin Wang
Atmos. Chem. Phys., 19, 1971–1983, https://doi.org/10.5194/acp-19-1971-2019, https://doi.org/10.5194/acp-19-1971-2019, 2019
Short summary
Short summary
Gaseous sulfuric acid is one of the key precursors for atmospheric new particle formation processes, but its measurement remains challenging. This work develops an estimation method for the gaseous sulfuric acid concentration in an urban environment in China using multiple atmospheric variables that are easier to measure. The consideration of the heterogeneous formation of HONO and the subsequent photo-production of OH radicals improves the performance of the estimation method.
Bo Jing, Zhen Wang, Fang Tan, Yucong Guo, Shengrui Tong, Weigang Wang, Yunhong Zhang, and Maofa Ge
Atmos. Chem. Phys., 18, 5115–5127, https://doi.org/10.5194/acp-18-5115-2018, https://doi.org/10.5194/acp-18-5115-2018, 2018
Short summary
Short summary
The nitrate/organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Our results reveal that the coexisting organic acid has considerable impacts on the phase and morphology of nitrate particles in the low and medium RH range, which thus result in obvious enhancement or suppression of water uptake with increasing RH. This new information provided here has important implications for atmospheric chemistry.
Ting Lei, Andreas Zuend, Yafang Cheng, Hang Su, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 18, 1045–1064, https://doi.org/10.5194/acp-18-1045-2018, https://doi.org/10.5194/acp-18-1045-2018, 2018
Short summary
Short summary
Measurements and thermodynamic equilibrium predictions for organic–inorganic aerosols related to components from biomass burning emissions demonstrate a diversity of hygroscopic growth and shrinking behavior, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). Controlled laboratory experiments with single solutes and/or with mixed organic–inorganic systems of known phase state will be useful to constrain model parameters of thermodynamic equilibrium models.
Xiaowei Wang, Bo Jing, Fang Tan, Jiabi Ma, Yunhong Zhang, and Maofa Ge
Atmos. Chem. Phys., 17, 12797–12812, https://doi.org/10.5194/acp-17-12797-2017, https://doi.org/10.5194/acp-17-12797-2017, 2017
Short summary
Short summary
Our results reveal the formation of NH4HC2O4 and NH4HSO4 from the reaction of oxalic acid (OA) with ammonium sulfate within aerosols during the slow dehydration compared to the rapid dehydration process. The hygroscopic growth of mixed particles at high RH upon hydration is substantially lower than that of the corresponding dehydration process due to the significant formation of low hygroscopic NH4HC2O4 and residual OA. These findings have important implications for atmospheric chemistry.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Fang Tan, Shengrui Tong, Bo Jing, Siqi Hou, Qifan Liu, Kun Li, Ying Zhang, and Maofa Ge
Atmos. Chem. Phys., 16, 8081–8093, https://doi.org/10.5194/acp-16-8081-2016, https://doi.org/10.5194/acp-16-8081-2016, 2016
Short summary
Short summary
The heterogeneous reactions of NO2 with CaCO3–(NH4)2SO4 mixtures were markedly dependent on RH. Calcium nitrate was formed under both dry and wet conditions; bassanite, gypsum, and koktaite were produced depending on RH. The heterogeneous uptake of NO2 on the CaCO3–(NH4)2SO4 mixtures was similar to that on pure CaCO3 particles under the dry condition, whereas the mixtures exhibited a promotive effect on the heterogeneous uptake of NO2 and the formation of nitrate, especially at medium RHs.
Bo Jing, Shengrui Tong, Qifan Liu, Kun Li, Weigang Wang, Yunhong Zhang, and Maofa Ge
Atmos. Chem. Phys., 16, 4101–4118, https://doi.org/10.5194/acp-16-4101-2016, https://doi.org/10.5194/acp-16-4101-2016, 2016
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play an important role in the hygroscopicity of aerosols. The coexisting hygroscopic species such as levoglucosan, malonic acid, and phthalic acid have a strong influence on hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely. The hygroscopic species such as levoglucosan in the mixed particles may significantly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid.
T. Lei, A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge
Atmos. Chem. Phys., 14, 11165–11183, https://doi.org/10.5194/acp-14-11165-2014, https://doi.org/10.5194/acp-14-11165-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Viscosity of aqueous ammonium nitrate–organic particles: equilibrium partitioning may be a reasonable assumption for most tropospheric conditions
Wind-driven Emission of Marine Ice Nucleating Particles in the Scripps Ocean-Atmosphere Research Simulator (SOARS)
Role of sea spray aerosol at the air–sea interface in transporting aromatic acids to the atmosphere
Modeling the influence of carbon branching structure on secondary organic aerosol formation via multiphase reactions of alkanes
Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Measurement report: Water diffusion in single suspended phase-separated aerosols
Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles
Jet aircraft lubrication oil droplets as contrail ice-forming particles
A study on the influence of inorganic ions, organic carbon and microstructure on the hygroscopic property of soot
Measurement report: The ice-nucleating activity of lichen sampled in a northern European boreal forest
Is transport of microplastics different from mineral particles? Idealized wind tunnel studies on polyethylene microspheres
Insights into secondary organic aerosol formation from the day- and nighttime oxidation of polycyclic aromatic hydrocarbons and furans in an oxidation flow reactor
Analysis of insoluble particles in hailstones in China
Influence of acidity on liquid–liquid phase transitions of mixed secondary organic aerosol (SOA) proxy–inorganic aerosol droplets
Deposition freezing, pore condensation freezing and adsorption: three processes, one description?
Measurements and calculations of enhanced side- and back-scattering of visible radiation by black carbon aggregates
Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts
Complex refractive index and single scattering albedo of Icelandic dust in the shortwave part of the spectrum
Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors
Saturation vapor pressure characterization of selected low-volatility organic compounds using a residence time chamber
Influence of the previous North Atlantic Oscillation (NAO) on the spring dust aerosols over North China
HUB: a method to model and extract the distribution of ice nucleation temperatures from drop-freezing experiments
Size-dependent hygroscopicity of levoglucosan and D-glucose aerosol nanoparticles
Technical note: Sublimation of frozen CsCl solutions in an environmental scanning electron microscope (ESEM) – determining the number and size of salt particles relevant to sea salt aerosols
Microphysics of liquid water in sub-10 nm ultrafine aerosol particles
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions
Reconsideration of surface tension and phase state effects on cloud condensation nuclei activity based on the atomic force microscopy measurement
Hygroscopicity and CCN potential of DMS-derived aerosol particles
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
The effectiveness of the coagulation sink of 3–10 nm atmospheric particles
What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Measurement report: An exploratory study of fluorescence and cloud condensation nuclei activity of urban aerosols in San Juan, Puerto Rico
Viscosity and physical state of sucrose mixed with ammonium sulfate droplets
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models
Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification
Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC
On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level
Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels
Comparison of saturation vapor pressures of α-pinene + O3 oxidation products derived from COSMO-RS computations and thermal desorption experiments
Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification
Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning
The effect of (NH4)2SO4 on the freezing properties of non-mineral dust ice-nucleating substances of atmospheric relevance
Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024, https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1 h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Kathryn A. Moore, Thomas C. J. Hill, Samantha Greeney, Chamika K. Madawala, Raymond J. Leibensperger III, Christopher D. Cappa, M. Dale Stokes, Grant B. Deane, Christopher Lee, Alexei V. Tivanski, Kimberly A. Prather, and Paul J. DeMott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2159, https://doi.org/10.5194/egusphere-2024-2159, 2024
Short summary
Short summary
This article presents results from the first study in a new wind-wave channel at the Scripps Institution of Oceanography. The experiment tested how wind speed over the ocean surface influences production of sea spray particles, which are important for radiative forcing and cloud formation in the atmosphere. We found that particle concentration and chemical composition varied with winds speed, and the changes were driven by changes in wind and wave-breaking rather seawater biology or chemistry.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024, https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) formation from branched alkanes (BAs) was simulated using the UNIPAR model, which predicted SOA growth via multiphase reactions of hydrocarbons, and compared with chamber data. Product distributions (PDs) of BAs were created by extrapolating PDs of linear alkanes (LAs). To account for methyl branching, an autoxidation reduction factor was applied to PDs. BAs in diesel fuel were shown to produce a higher proportion of SOA compared with LAs.
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024, https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Short summary
An aerosol optical tweezer (AOT) Raman spectroscopy system is developed to capture a single aerosol droplet for phase transition monitoring and morphology studies. Rapid droplet capture is achieved and accurate droplet size and refractive index are retrieved. Results indicate that mixed inorganic/organic droplets are more inclined to form core–shell morphology when RH decreases. The phase transitions of secondary mixed organic aerosol/inorganic droplets vary with their precursors.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024, https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Short summary
Brown carbon (BrC) emissions were estimated, for residential wood combustion (RWC) from various northern European appliances, utilizing an extensive seven-wavelength aethalometer dataset and thermal–optical carbon analysis. The contribution of BrC370–950 to the absorption of visible light varied between 1 % and 21 %, and was linked with fuel moisture content and combustion efficiency. This study provides important information required for assessing the climate effects of RWC emissions.
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
Atmos. Chem. Phys., 24, 2937–2950, https://doi.org/10.5194/acp-24-2937-2024, https://doi.org/10.5194/acp-24-2937-2024, 2024
Short summary
Short summary
The interplay between aerosols and moisture is one of the most crucial atmospheric processes. However, to date, literature results on the influence of phase separation on water diffusion in aerosols are divergent. This work directly unveiled the water diffusion process in single suspended phase-separated microdroplets and quantitatively analyzed the diffusion rate and extent. The results show that diffusion limitations and certain molecule clusters existed in the phase-separated aerosols.
Eugene F. Mikhailov, Sergey S. Vlasenko, and Alexei A. Kiselev
Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024, https://doi.org/10.5194/acp-24-2971-2024, 2024
Short summary
Short summary
Surface tension and water activity are key thermodynamic parameters determining the impact of atmospheric aerosols on human health and climate. However, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds. In this study, we determined for the first time the water activity and surface tension of mixed organic/inorganic nanodroplets by applying a differential Köhler analysis (DKA) to hygroscopic growth measurements.
Joel Ponsonby, Leon King, Benjamin J. Murray, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 2045–2058, https://doi.org/10.5194/acp-24-2045-2024, https://doi.org/10.5194/acp-24-2045-2024, 2024
Short summary
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact as important as that of aviation’s CO2 emissions. For the first time, we experimentally investigate the freezing behaviour of water droplets formed on jet lubrication oil aerosol. We show that they can activate to form water droplets and discuss their potential impact on contrail formation. Our study has implications for contrails produced by future aircraft engine and fuel technologies.
Zhanyu Su, Lanxiadi Chen, Yuan Liu, Peng Zhang, Tianzeng Chen, Biwu Chu, Mingjin Tang, Qingxin Ma, and Hong He
Atmos. Chem. Phys., 24, 993–1003, https://doi.org/10.5194/acp-24-993-2024, https://doi.org/10.5194/acp-24-993-2024, 2024
Short summary
Short summary
In this study, different soot particles were analyzed to better understand their behavior. It was discovered that water-soluble substances in soot facilitate water adsorption at low humidity while increasing the number of water layers at high humidity. Soot from organic fuels exhibits hygroscopicity influenced by organic carbon and microstructure. Additionally, the presence of sulfate ions due to the oxidation of SO2 enhances soot's hygroscopicity.
Ulrike Proske, Michael P. Adams, Grace C. E. Porter, Mark Holden, Jaana Bäck, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2023-2780, https://doi.org/10.5194/egusphere-2023-2780, 2024
Short summary
Short summary
Ice nucleating particles aid freezing of water droplets in clouds and thus modify clouds' properties. During a campaign in the boreal forest in Finland, substantial concentrations of biological ice nucleating particles were observed, despite many of their potential biological sources being snow covered. We sampled lichen in this location and tested its ice nculeation ability in the laboratory. We find that indeed the lichen harbours INPs, which may be important in such snow covered environments.
Eike Maximilian Esders, Sebastian Sittl, Inka Krammel, Wolfgang Babel, Georg Papastavrou, and Christoph Karl Thomas
Atmos. Chem. Phys., 23, 15835–15851, https://doi.org/10.5194/acp-23-15835-2023, https://doi.org/10.5194/acp-23-15835-2023, 2023
Short summary
Short summary
Do microplastics behave differently from mineral particles when they are exposed to wind? We observed plastic and mineral particles in a wind tunnel and measured at what wind speeds the particles start to move. The results indicate that microplastics start to move at smaller wind speeds as they weigh less and are less sticky. Hence, we think that microplastics also move more easily in the environment.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Haifan Zhang, Xiangyu Lin, Qinghong Zhang, Kai Bi, Chan-Pang Ng, Yangze Ren, Huiwen Xue, Li Chen, and Zhuolin Chang
Atmos. Chem. Phys., 23, 13957–13971, https://doi.org/10.5194/acp-23-13957-2023, https://doi.org/10.5194/acp-23-13957-2023, 2023
Short summary
Short summary
This work is the first study to simultaneously analyze the number concentrations and species of insoluble particles in hailstones. The size distribution of insoluble particles for each species vary greatly in different hailstorms but little in shells. Two classic size distribution modes of organics and dust were fitted for the description of insoluble particles in deep convection. Combining this study with future experiments will lead to refinement of weather and climate models.
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Mária Lbadaoui-Darvas, Ari Laaksonen, and Athanasios Nenes
Atmos. Chem. Phys., 23, 10057–10074, https://doi.org/10.5194/acp-23-10057-2023, https://doi.org/10.5194/acp-23-10057-2023, 2023
Short summary
Short summary
Heterogeneous ice nucleation is the main ice formation mechanism in clouds. The mechanism of different freezing modes is to date unknown, which results in large model biases. Experiments do not allow for direct observation of ice nucleation at its native resolution. This work uses first principles molecular simulations to determine the mechanism of the least-understood ice nucleation mode and link it to adsorption through a novel modeling framework that unites ice and droplet formation.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
Chun Xiong, Binyu Kuang, Fei Zhang, Xiangyu Pei, Zhengning Xu, and Zhibin Wang
Atmos. Chem. Phys., 23, 8979–8991, https://doi.org/10.5194/acp-23-8979-2023, https://doi.org/10.5194/acp-23-8979-2023, 2023
Short summary
Short summary
In hydration, an apparent water diffusion hindrance by an organic surfactant shell was confirmed, raising the inorganic deliquescence relative humidity (RH) to a nearly saturated condition. In dehydration, phase separations were observed for inorganic surfactant systems, showing a strong dependence on the organic molecular
oxygen-to-carbon ratio. Our results could improve fundamental knowledge about aerosol mixing states and decrease uncertainty in model estimations of global radiative effects.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Emelie L. Graham, Cheng Wu, David M. Bell, Amelie Bertrand, Sophie L. Haslett, Urs Baltensperger, Imad El Haddad, Radovan Krejci, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 23, 7347–7362, https://doi.org/10.5194/acp-23-7347-2023, https://doi.org/10.5194/acp-23-7347-2023, 2023
Short summary
Short summary
The volatility of an aerosol particle is an important parameter for describing its atmospheric lifetime. We studied the volatility of secondary organic aerosols from nitrate-initiated oxidation of three biogenic precursors with experimental methods and model simulations. We saw higher volatility than for the corresponding ozone system, and our simulations produced variable results with different parameterizations which warrant a re-evaluation of the treatment of the nitrate functional group.
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Yan Li, Falei Xu, Juan Feng, Mengying Du, Wenjun Song, Chao Li, and Wenjing Zhao
Atmos. Chem. Phys., 23, 6021–6042, https://doi.org/10.5194/acp-23-6021-2023, https://doi.org/10.5194/acp-23-6021-2023, 2023
Short summary
Short summary
There is a significantly negative relationship between boreal winter North Atlantic Oscillation (NAO) and dust aerosols (DAs) in the eastern part of China (30–40°N, 105–120°E), which is not a DA source area but is severely affected by the dust events (DEs). Under the effect of the NAO negative phase, main atmospheric circulation during the DEs is characterized by variation of the transient eddy flux. The work is of reference value to the prediction of DEs and the understanding of their causes.
Ingrid de Almeida Ribeiro, Konrad Meister, and Valeria Molinero
Atmos. Chem. Phys., 23, 5623–5639, https://doi.org/10.5194/acp-23-5623-2023, https://doi.org/10.5194/acp-23-5623-2023, 2023
Short summary
Short summary
Ice formation is a key atmospheric process facilitated by a wide range of aerosols. We present a method to model and interpret ice nucleation experiments and extract the distribution of the potency of nucleation sites. We use the method to optimize the conditions of laboratory sampling and extract distributions of ice nucleation temperatures from bacteria, fungi, and pollen. These reveal unforeseen subpopulations of nuclei in these systems and how they respond to changes in their environment.
Ting Lei, Hang Su, Nan Ma, Ulrich Pöschl, Alfred Wiedensohler, and Yafang Cheng
Atmos. Chem. Phys., 23, 4763–4774, https://doi.org/10.5194/acp-23-4763-2023, https://doi.org/10.5194/acp-23-4763-2023, 2023
Short summary
Short summary
We investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles using a nano-HTDMA. There is a weak size dependence of the hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed in the size range 6 to 20 nm. The use of the DKA method leads to good agreement with the hygroscopic growth factor of glucose nanoparticles with diameters down to 6 nm.
Lubica Vetráková, Vilém Neděla, Kamila Závacká, Xin Yang, and Dominik Heger
Atmos. Chem. Phys., 23, 4463–4488, https://doi.org/10.5194/acp-23-4463-2023, https://doi.org/10.5194/acp-23-4463-2023, 2023
Short summary
Short summary
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we utilized a unique electron microscope to identify the most suitable conditions for formation of the small salt (CsCl) particles, proxies of the aerosols, from sublimating salty snow. Very low sublimation temperature and low salt concentration are needed for formation of such particles. These observations may help us to better understand polar spring ozone depletion and bromine explosion events.
Xiaohan Li and Ian C. Bourg
Atmos. Chem. Phys., 23, 2525–2556, https://doi.org/10.5194/acp-23-2525-2023, https://doi.org/10.5194/acp-23-2525-2023, 2023
Short summary
Short summary
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation. Representation of this effect is hindered by limited understanding of the properties of liquid water in these particles. Our simulations of aerosol particles containing salt or organic compounds reveal that water enters a less cohesive phase at droplet sizes below 4 nm. This effect causes important deviations from theoretical predictions of aerosol properties, including phase state and hygroscopic growth.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Charbel Harb and Hosein Foroutan
Atmos. Chem. Phys., 22, 11759–11779, https://doi.org/10.5194/acp-22-11759-2022, https://doi.org/10.5194/acp-22-11759-2022, 2022
Short summary
Short summary
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is crucial for understanding their climatic and public health impacts. We develop an LSA emission parameterization and implement it in an atmospheric model to investigate Great Lakes surface emissions. We find that the same breaking wave is likely to produce fewer aerosols in freshwater than in saltwater and that Great Lakes emissions influence the regional aerosol burden and can reach the cloud layer.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022, https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary
Short summary
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its influence factors is crucial for disaster mitigation. Based on a linear regression method, this study revealed the interdecadal variability of relationships between ENSO and dust over northwestern South Asia from 1982 to 2014 and analyzed the effects of atmospheric factors on this interdecadal variability. The result sheds new light on numerical simulation involving the interdecadal variation of dust.
Bighnaraj Sarangi, Darrel Baumgardner, Benjamin Bolaños-Rosero, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 22, 9647–9661, https://doi.org/10.5194/acp-22-9647-2022, https://doi.org/10.5194/acp-22-9647-2022, 2022
Short summary
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, https://doi.org/10.5194/acp-22-5331-2022, 2022
Short summary
Short summary
Incomplete combustion of fossil fuel produces carbonaceous particles called soot. These particles can affect cloud formation by acting as centres for droplet or ice formation. The atmospheric residence time of soot particles is of the order of days to weeks, which can result in them becoming coated by various trace species in the atmosphere such as acids. In this study, we quantify the cirrus cloud-forming ability of soot particles coated with the atmospherically ubiquitous sulfuric acid.
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016, https://doi.org/10.5194/acp-22-4985-2022, https://doi.org/10.5194/acp-22-4985-2022, 2022
Short summary
Short summary
Soot particles impact cloud formation and radiative properties in the upper atmosphere where aircraft emit carbonaceous particles. We use cloud chambers to mimic the upper atmosphere temperature and humidity to test the influence of the morphology of the soot particles on ice cloud formation. For particles larger than 200 nm, the compacted (densified) samples have a higher affinity for ice crystal formation in the cirrus regime than the fluffy (un-compacted) soot particles of the same sample.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Cited articles
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 6, 8657–8666,
https://doi.org/10.1073/pnas.1900125116, 2019.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Birdsall, A. W., Andreoni, J. F., and Elrod, M. J.: Investigation of the
Role of Bicyclic Peroxy Radicals in the Oxidation Mechanism of Toluene,
J. Phys. Chem. A, 114, 10655–10663, https://doi.org/10.1021/jp105467e, 2010.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by
small particles, John Wiley & Sons, Hoboken, NJ, 1983.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Technol., 40,
27–67, https://doi.org/10.1080/02786820500421521, 2006.
Chakrabarty, R. K., Gyawali, M., Yatavelli, R. L. N., Pandey, A., Watts, A. C., Knue, J., Chen, L.-W. A., Pattison, R. R., Tsibart, A., Samburova, V., and Moosmüller, H.: Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing, Atmos. Chem. Phys., 16, 3033–3040, https://doi.org/10.5194/acp-16-3033-2016, 2016.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Chu, B., Liu, T., Zhang, X., Liu, Y., Ma, Q., Ma, J., He, H., Wang, X., Li,
J., and Hao, J.: Secondary aerosol formation and oxidation capacity in
photooxidation in the presence of Al2O3 seed particles and SO2, Sci.
China Chem., 58, 1426–1434, https://doi.org/10.1007/s11426-015-5456-0, 2015.
Chu, B., Zhang, X., Liu, Y., He, H., Sun, Y., Jiang, J., Li, J., and Hao, J.: Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth, Atmos. Chem. Phys., 16, 14219–14230, https://doi.org/10.5194/acp-16-14219-2016, 2016.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., and Al, E.: Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change change. Computational Geometry, 18, 95–123, 2013.
Coeur-Tourneur, C., Cassez, A., and Wenger, J. C.: Rate coefficients for the
gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and
related compounds, J. Phys. Chem. A, 114, 11645–11650,
2010.
Deng, W., Liu, T., Zhang, Y., Situ, S., Hu, Q., He, Q., Zhang, Z., Lü,
S., Bi, X., Wang, X., Boreave, A., George, C., Ding, X., and Wang, X.:
Secondary organic aerosol formation from photo-oxidation of toluene with
NOx and SO2: Chamber simulation with purified air versus urban
ambient air as matrix, Atmos. Environ., 150, 67–76,
https://doi.org/10.1016/j.atmosenv.2016.11.047, 2017.
Dickerson, R., Kondragunta, S., Stenchikov, G., Civerolo, K., Doddridge, B.,
and Holben, B.: The impact of aerosols on solar ultraviolet radiation and
photochemical smog, Science, 278, 827–830, 1997.
Faust, J. A., Wong, J. P., Lee, A. K., and Abbatt, J. P.: Role of Aerosol
Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic
Compounds, Environ. Sci. Technol., 51, 1405–1413, https://doi.org/10.1021/acs.est.6b04700,
2017.
Ferris, J., Briner, R., and Boyce, C.: Lythraceae alkaloids. IX. Isolation
and structure Elucidation of the alkaloids of Lagerstroemia indica, J. Am. Chem. Soc., 93, 2958–2962, 1971.
Flores, J. M., Washenfelder, R. A., Adler, G., Lee, H. J., Segev, L.,
Laskin, J., Laskin, A., Nizkorodov, S. A., Brown, S. S., and Rudich, Y.:
Complex refractive indices in the near-ultraviolet spectral region of
biogenic secondary organic aerosol aged with ammonia, Phys. Chem. Chem. Phys.,
16, 10629–10642, https://doi.org/10.1039/c4cp01009d, 2014a.
Flores, J. M., Zhao, D. F., Segev, L., Schlag, P., Kiendler-Scharr, A., Fuchs, H., Watne, Å. K., Bluvshtein, N., Mentel, Th. F., Hallquist, M., and Rudich, Y.: Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol, Atmos. Chem. Phys., 14, 5793–5806, https://doi.org/10.5194/acp-14-5793-2014, 2014b.
Forstner, H. J. L., Flagan, R. C., and Seinfeld, J. H.: Secondary organic
aerosol from the photooxidation of aromatic hydrocarbons: Molecular
composition, Environ. Sci. Technol., 31, 1345–1358,
https://doi.org/10.1021/es9605376, 1997.
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and
Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and
implications for formation of secondary organic aerosols, J.
Geophys. Res., 113, D15303, https://doi.org/10.1029/2007jd009505, 2008.
Fu, T.-M., Jacob, D. J., and Heald, C. L.: Aqueous-phase reactive uptake of
dicarbonyls as a source of organic aerosol over eastern North America,
Atmos. Environ., 43, 1814–1822, https://doi.org/10.1016/j.atmosenv.2008.12.029,
2009.
Girolami, G. S.: A simple “back of the envelope” method for estimating the
densities and molecular volumes of liquids and solids, J. Chem.
Educ., 71, 962–964, 1994.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad.
Sci. USA, 111, 17373–17378,
https://doi.org/10.1073/pnas.1419604111, 2014.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973–2986, https://doi.org/10.5194/acp-9-2973-2009, 2009.
Hinks, M. L., Montoya-Aguilera, J., Ellison, L., Lin, P., Laskin, A., Laskin, J., Shiraiwa, M., Dabdub, D., and Nizkorodov, S. A.: Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene, Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, 2018.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prévôt, A. S.: High secondary aerosol contribution to
particulate pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J.
H., Surratt, J. D., and Seinfeld, J. H.: Formation of secondary organic
aerosol from irradiated α-pinene/toluene/NOx mixtures and the effect
of isoprene and sulfur dioxide, J. Geophys. Res., 113, D09303,
https://doi.org/10.1029/2007jd009426, 2008.
Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y.,
Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng, X., An, T.,
Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J.,
and Zhang, R.: Reassessing the atmospheric oxidation mechanism of toluene,
P. Natl. Acad. Sci. USA, 114, 8169–8174, https://doi.org/10.1073/pnas.1705463114, 2017.
Jia, L. and Xu, Y.: Different roles of water in secondary organic aerosol formation from toluene and isoprene, Atmos. Chem. Phys., 18, 8137–8154, https://doi.org/10.5194/acp-18-8137-2018, 2018.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kamens, R. M., Zhang, H., Chen, E. H., Zhou, Y., Parikh, H. M., Wilson, R.
L., Galloway, K. E., and Rosen, E. P.: Secondary organic aerosol formation
from toluene in an atmospheric hydrocarbon mixture: Water and particle seed
effects, Atmos. Environ., 45, 2324–2334,
https://doi.org/10.1016/j.atmosenv.2010.11.007, 2011.
Kelly, J. L., Michelangeli, D. V., Makar, P. A., Hastie, D. R., Mozurkewich,
M., and Auld, J.: Aerosol speciation and mass prediction from toluene
oxidation under high NOx conditions, Atmos. Environ., 44, 361–369,
https://doi.org/10.1016/j.atmosenv.2009.10.035, 2010.
Kim, H. and Paulson, S. E.: Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene, Atmos. Chem. Phys., 13, 7711–7723, https://doi.org/10.5194/acp-13-7711-2013, 2013.
Kim, H., Barkey, B., and Paulson, S. E.: Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from
ozonolysis and photo-oxidation, J. Geophys. Res., 115, D24212,
https://doi.org/10.1029/2010jd014549, 2010.
Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and
Jaoui, M.: Secondary organic carbon and aerosol yields from the irradiations
of isoprene and α-pinene in the presence of NOx and SO2,
Environ. Sci. Technol., 40, 3807–3812, https://doi.org/10.1021/es052446r,
2006.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.,
Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D.
R., and Davidovits, P.: Relationship between oxidation level and optical
properties of secondary organic aerosol, Environ. Sci. Technol., 47, 6349–6357,
https://doi.org/10.1021/es401043j, 2013.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.
Li, J., Li, K., Wang, W., Wang, J., Peng, C., and Ge, M.: Optical properties
of secondary organic aerosols derived from long-chain alkanes under various
NOx and seed conditions, Sci. Total Environ., 579,
1699–1705, https://doi.org/10.1016/j.scitotenv.2016.11.189, 2017.
Li, J., Wang, W., Li, K., Zhang, W., Ge, M., and Peng, C.: Development and
application of the multi-wavelength cavity ring-down aerosol extinction
spectrometer, J. Environ. Sci., 76, 227–237, https://doi.org/10.1016/j.jes.2018.04.030,
2018.
Li, K., Wang, W., Ge, M., Li, J., and Wang, D.: Optical properties of
secondary organic aerosols generated by photooxidation of aromatic
hydrocarbons, Sci. Rep.-UK, 4, 4922, https://doi.org/10.1038/srep04922, 2014.
Li, K., Li, J., Liggio, J., Wang, W., Ge, M., Liu, Q., Guo, Y., Tong, S.,
Li, J., and Peng, C.: Enhanced light scattering of secondary organic
aerosols by multiphase reactions, Environ. Sci. Technol., 51,
1285–1292, 2017.
Li, K., Li, J., Wang, W., Li, J., Peng, C., Wang, D., and Ge, M.: Effects of
Gas-Particle Partitioning on Refractive Index and Chemical Composition of
m-Xylene Secondary Organic Aerosol, J. Phys. Chem. A, 122, 3250–3260,
https://doi.org/10.1021/acs.jpca.7b12792, 2018.
Liggio, J. and Li, S.-M.: A new source of oxygenated organic aerosol and oligomers, Atmos. Chem. Phys., 13, 2989–3002, https://doi.org/10.5194/acp-13-2989-2013, 2013.
Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin,
A.: Molecular characterization of brown carbon (BrC) chromophores in
secondary organic aerosol generated from photo-oxidation of toluene, Phys.
Chem. Chem. Phys., 17, 23312–23325, https://doi.org/10.1039/c5cp02563j, 2015.
Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H.,
Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S.,
Kleindienst, T. E., Gold, A., and Surratt, J. D.: Isoprene Epoxydiols as
Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive
Uptake Studies with Authentic Compounds, Environ. Sci.
Technol., 46, 250–258, https://doi.org/10.1021/es202554c, 2012.
Lin, Y. H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang, H.,
Riva, M., Zhang, Z., Gold, A., Kautzman, K. E., and Surratt, J. D.:
Light-absorbing oligomer formation in secondary organic aerosol from
reactive uptake of isoprene epoxydiols, Environ. Sci. Technol., 48,
12012–12021, https://doi.org/10.1021/es503142b, 2014.
Liu, C., Chen, T., Liu, Y., Liu, J., He, H., and Zhang, P.: Enhancement of secondary organic aerosol formation and its oxidation state by SO2 during photooxidation of 2-methoxyphenol, Atmos. Chem. Phys., 19, 2687–2700, https://doi.org/10.5194/acp-19-2687-2019, 2019.
Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt, F., Selimovic, V., and Shilling, J. E.: Optical properties and aging of light-absorbing secondary organic aerosol, Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, 2016.
Liu, P. F., Abdelmalki, N., Hung, H.-M., Wang, Y., Brune, W. H., and Martin, S. T.: Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene, Atmos. Chem. Phys., 15, 1435–1446, https://doi.org/10.5194/acp-15-1435-2015, 2015.
Liu, T., Wang, X., Hu, Q., Deng, W., Zhang, Y., Ding, X., Fu, X., Bernard, F., Zhang, Z., Lü, S., He, Q., Bi, X., Chen, J., Sun, Y., Yu, J., Peng, P., Sheng, G., and Fu, J.: Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2, Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, 2016.
Liu, T., Huang, D. D., Li, Z., Liu, Q., Chan, M., and Chan, C. K.: Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity, Atmos. Chem. Phys., 18, 5677–5689, https://doi.org/10.5194/acp-18-5677-2018, 2018.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D.,
Wu, Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer
Particles Are in the Liquid State during Heavy Haze Episodes in the Urban
Atmosphere of Beijing, China, Environ. Sci. Technol. Lett., 4, 427–432,
https://doi.org/10.1021/acs.estlett.7b00352, 2017.
Marrero-Ortiz, W., Hu, M., Du, Z., Ji, Y., Wang, Y., Guo, S., Lin, Y.,
Gomez-Hermandez, M., Peng, J., Li, Y., Secrest, J., Zamora, M. L., Wang, Y.,
An, T., and Zhang, R.: Formation and Optical Properties of Brown Carbon from
Small alpha-Dicarbonyls and Amines, Environ. Sci. Technol., 53, 117–126,
https://doi.org/10.1021/acs.est.8b03995, 2019.
Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary
organic aerosols and their changes by chemical processes, Chem. Rev., 115,
4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, 2018.
Nakayama, T., Matsumi, Y., Sato, K., Imamura, T., Yamazaki, A., and
Uchiyama, A.: Laboratory studies on optical properties of secondary organic
aerosols generated during the photooxidation of toluene and the ozonolysis
of α-pinene, J. Geophys. Res., 115, D24204,
https://doi.org/10.1029/2010jd014387, 2010.
Nakayama, T., Sato, K., Matsumi, Y., Imamura, T., Yamazaki, A., and Uchiyama, A.: Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene, Atmos. Chem. Phys., 13, 531–545, https://doi.org/10.5194/acp-13-531-2013, 2013.
Nakayama, T., Sato, K., Tsuge, M., Imamura, T., and Matsumi, Y.: Complex
refractive index of secondary organic aerosol generated from isoprene/NOx
photooxidation in the presence and absence of SO2, J.
Geophys. Res.-Atmos., 120, 7777–7787, https://doi.org/10.1002/2015jd023522,
2015.
Nakayama, T., Sato, K., Imamura, T., and Matsumi, Y.: Effect of Oxidation
Process on Complex Refractive Index of Secondary Organic Aerosol Generated
from Isoprene, Environ. Sci. Technol., 52, 2566–2574, https://doi.org/10.1021/acs.est.7b05852, 2018.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
Odum, J. R.: The Atmospheric Aerosol-Forming Potential of Whole Gasoline
Vapor, Science, 276, 96–99, https://doi.org/10.1126/science.276.5309.96, 1997.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585,
https://doi.org/10.1021/es950943+, 1996.
Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Forstner, H. J. L., Flagan,
R. C., and Seinfeld, J. H.: Aromatics, reformulated gasoline, and
atmospheric organic aerosol formation, Environ. Sci.
Technol., 31, 1890–1897, https://doi.org/10.1021/es960535l, 1997.
Peng, C., Wang, W., Li, K., Li, J., Zhou, L., Wang, L., and Ge, M.: The
optical properties of limonene secondary organic aerosols: The role of
NO3, OH, and O3 in the oxidation processes, J. Geophys.
Res.-Atmos., 123, 3292–3303, 2018.
Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., Shang, D. J., Zamora, M.
L., Zeng, L. M., Shao, M., Wu, Y. S., Zheng, J., Wang, Y., Glen, C. R.,
Collins, D. R., Molina, M. J., and Zhang, R. Y.: Markedly enhanced
absorption and direct radiative forcing of black carbon under polluted urban
environments, P. Natl. Acad. Sci. USA, 113, 4266–4271, https://doi.org/10.1073/pnas.1602310113, 2016.
Phillips, S. M. and Smith, G. D.: Light Absorption by Charge Transfer
Complexes in Brown Carbon Aerosols, Environ. Sci. Technol.
Lett., 1, 382–386, https://doi.org/10.1021/ez500263j, 2014.
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito,
K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and
long-term exposure to fine particulate air pollution, Jama-J.
Am. Med. Assoc., 287, 1132–1141, https://doi.org/10.1001/jama.287.9.1132, 2002.
Redmond, H. and Thompson, J. E.: Evaluation of a quantitative
structure-property relationship (QSPR) for predicting mid-visible refractive
index of secondary organic aerosol (SOA), Phys. Chem. Chem. Phys., 13,
6872–6882, https://doi.org/10.1039/c0cp02270e, 2011.
Santiago, M., Vivanco, M. G., and Stein, A. F.: SO2 effect on secondary
organic aerosol from a mixture of anthropogenic VOCs: experimental and
modelled results, Int. J. Environ. Pollut., 50, 224–233, 2012.
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, New York, 2006.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T.,
Pandis, S. N., Lelieveld, J., Koop, T., and Poschl, U.: Global distribution
of particle phase state in atmospheric secondary organic aerosols, Nat.
Commun., 8, 15002, https://doi.org/10.1038/ncomms15002, 2017.
Staudt, S., Kundu, S., Lehmler, H. J., He, X., Cui, T., Lin, Y. H.,
Kristensen, K., Glasius, M., Zhang, X., Weber, R. J., Surratt, J. D., and
Stone, E. A.: Aromatic organosulfates in atmospheric aerosols: synthesis,
characterization, and abundance, Atmos. Environ., 94, 366–373,
https://doi.org/10.1016/j.atmosenv.2014.05.049, 2014.
Sun, H., Biedermann, L., and Bond, T. C.: Color of brown carbon: A model for
ultraviolet and visible light absorption by organic carbon aerosol,
Geophys. Res. Lett., 34, L17813, https://doi.org/10.1029/2007gl029797, 2007.
Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji,
D., Li, J., Tang, X., Fu, P., and Wang, Z.: Rapid formation and evolution of
an extreme haze episode in Northern China during winter 2015, Sci. Rep.-UK, 6,
27151, https://doi.org/10.1038/srep27151, 2016a.
Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016b.
Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan,
A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.:
Reactive intermediates revealed in secondary organic aerosol formation from
isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China, Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, 2017.
Wang, L., Wang, W., and Ge, M.: Extinction efficiencies of mixed aerosols
measured by aerosol cavity ring down spectrometry, Chinese Sci. Bull.,
57, 2567–2573, https://doi.org/10.1007/s11434-012-5146-7, 2012.
Wang, W., Li, K., Zhou, L., Ge, M., Hou, S., Tong, S., Mu, Y., and Jia, L.:
Evaluation and application of dual-reactor chamber for studying atmospheric
oxidation processes and mechanisms, Acta Physico-Chimica Sinica, 31,
1251–1259, 2015.
Wang, Y., Khalizov, A., Levy, M., and Zhang, R.: New Directions: Light
absorbing aerosols and their atmospheric impacts, Atmos. Environ.,
81, 713–715, https://doi.org/10.1016/j.atmosenv.2013.09.034, 2013.
Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing, Atmos. Chem. Phys., 18, 10693–10713, https://doi.org/10.5194/acp-18-10693-2018, 2018.
Watson, J. G.: Visibility: Science and Regulation, J. Air
Waste Manag. Assoc., 52, 628–713, https://doi.org/10.1080/10473289.2002.10470813,
2002.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem. Rev.,
115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhao, D., Schmitt, S. H., Wang, M., Acir, I.-H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., and Mentel, T. F.: Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene, Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, 2018.
Short summary
We investigated the effect of SO2 under different humidities on optical properties of toluene-derived SOA under four conditions with CRDs and PAX at 532 and 375 nm, respectively. Our results showed that SO2 under different humidities can change the refractive complex index of toluene SOA by influencing the multiphase processes and altering the aerosol chemical compositions. Different atmospheric conditions could affect the properties of toluene SOA, as well as the global radiative balance.
We investigated the effect of SO2 under different humidities on optical properties of...
Altmetrics
Final-revised paper
Preprint