Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 2143–2159, 2020
https://doi.org/10.5194/acp-20-2143-2020
Atmos. Chem. Phys., 20, 2143–2159, 2020
https://doi.org/10.5194/acp-20-2143-2020

Research article 26 Feb 2020

Research article | 26 Feb 2020

Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model

Zhipeng Qu et al.

Related authors

A simulation-experiment-based assessment of retrievals of above-cloud temperature and water vapor using a hyperspectral infrared sounder
Jing Feng, Yi Huang, and Zhipeng Qu
Atmos. Meas. Tech., 14, 5717–5734, https://doi.org/10.5194/amt-14-5717-2021,https://doi.org/10.5194/amt-14-5717-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Convective hydration in the tropical tropopause layer during the StratoClim aircraft campaign: pathway of an observed hydration patch
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019,https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019,https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor
Hao Ye, Andrew E. Dessler, and Wandi Yu
Atmos. Chem. Phys., 18, 4425–4437, https://doi.org/10.5194/acp-18-4425-2018,https://doi.org/10.5194/acp-18-4425-2018, 2018
Short summary
Technical note: A noniterative approach to modelling moist thermodynamics
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 17, 15037–15043, https://doi.org/10.5194/acp-17-15037-2017,https://doi.org/10.5194/acp-17-15037-2017, 2017
Short summary
Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics
W. Woiwode, J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal
Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014,https://doi.org/10.5194/acp-14-11525-2014, 2014

Cited articles

Anderson, J. G., Wilmouth, J. B. Smith, J. B., and Sayres, D. S.: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337, 835–839, https://doi.org/10.1126/science.1222978, 2012. 
Baines, P. G.: Topographic Effects in Stratified Fluids, Cambridge University Press, Cambridge, UK, 1995. 
Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., and Polvani, L. M.: Stratospheric water vapor: an important climate feedback, Clim. Dynam., 53, 1697–1710, https://doi.org/10.1007/s00382-019-04721-4, 2019. 
Bélair, S., Mailhot, J., Girard, C., and Vaillancourt, A. P.: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system, Mon. Weather Rev., 133, 1938–1960. https://doi.org/10.1175/MWR2958.1, 2005. 
Bélair, S., Leroyer, S., Seino, N., Spacek, L., Souvanlasy, V., and Paquin-Ricard, D.: Role and impact of the urban environment in the numerical forecast of an intense summertime precipitation event over Tokyo, J. Meteorol. Soc. Jpn. II, 96, 77–94, 2017. 
Download
Short summary
This study aims to better understand the mechanism of transport of water vapour through the mid-latitude tropopause. The results affirm the strong influence of overshooting convection on lower-stratospheric water vapour and highlight the importance of both dynamics and cloud microphysics in simulating water vapour distribution in the region of the upper troposphere–lower stratosphere.
Altmetrics
Final-revised paper
Preprint