Articles | Volume 20, issue 1
Atmos. Chem. Phys., 20, 163–180, 2020
https://doi.org/10.5194/acp-20-163-2020
Atmos. Chem. Phys., 20, 163–180, 2020
https://doi.org/10.5194/acp-20-163-2020

Research article 06 Jan 2020

Research article | 06 Jan 2020

Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction

Killian P. Brennan et al.

Related authors

Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021,https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361,https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): validation and application to field-collected snow samples
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019,https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Shape dependence of snow crystal fall speed
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 7545–7565, https://doi.org/10.5194/acp-21-7545-2021,https://doi.org/10.5194/acp-21-7545-2021, 2021
Short summary
Captured cirrus ice particles in high definition
Nathan Magee, Katie Boaggio, Samantha Staskiewicz, Aaron Lynn, Xuanyi Zhao, Nicholas Tusay, Terance Schuh, Manisha Bandamede, Lucas Bancroft, David Connelly, Kevin Hurler, Bryan Miner, and Elissa Khoudary
Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021,https://doi.org/10.5194/acp-21-7171-2021, 2021
Short summary
What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021,https://doi.org/10.5194/acp-21-6735-2021, 2021
Short summary
Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021,https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Hannes Griesche, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021,https://doi.org/10.5194/acp-21-6347-2021, 2021
Short summary

Cited articles

Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989–11003, https://doi.org/10.5194/acp-13-10989-2013, 2013. 
Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, 2018. 
Birkeland, K. W., Johnson, R. F., and Schmidt, D. S.: Near-Surface Faceted Crystals Formed by Diurnal Recrystallization: A Case Study of Weak Layer Formation in the Mountain Snowpack and its Contribution to Snow Avalanches, Arct. Alp. Res., 30, 200–204, https://doi.org/10.2307/1552135, 1998. 
Boose, Y., Kanji, Z. A., Kohn, M., Sierau, B., Zipori, A., Crawford, I., Lloyd, G., Bukowiecki, N., Herrmann, E., Kupiszewski, P., Steinbacher, M., and Lohmann, U.: Ice Nucleating Particle Measurements at 241 K during Winter Months at 3580 m MSL in the Swiss Alps, J. Atmos. Sci., 73, 2203–2228, https://doi.org/10.1175/JAS-D-15-0236.1, 2016. 
Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, 2019. 
Download
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Altmetrics
Final-revised paper
Preprint