Articles | Volume 20, issue 19
https://doi.org/10.5194/acp-20-11349-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-11349-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of future land use and land cover change on mid-21st-century surface ozone air quality: distinguishing between the biogeophysical and biogeochemical effects
Lang Wang
CORRESPONDING AUTHOR
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Department of Geography and Resource Management, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Partner State Key Laboratory of Agrobiotechnology, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Chi-Yung Tam
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Mehliyar Sadiq
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Peng Wang
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR, China
Kevin K. W. Cheung
Department of Earth and Environmental Sciences, Macquarie University, Sydney, 2109, Australia
Climate Research, NSW Department of Planning, Industry and Environment, Sydney, Australia
Related authors
No articles found.
Biao Luo, Lei Liu, David H. Y. Yung, Tiangang Yuan, Jingwei Zhang, Leo T. H. Ng, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 10089–10108, https://doi.org/10.5194/acp-25-10089-2025, https://doi.org/10.5194/acp-25-10089-2025, 2025
Short summary
Short summary
Through a combination of emission models and air quality models, this study aims to address the pressing issue of poor nitrogen management while promoting sustainable food systems and public health in China. We discovered that improving nitrogen management of crops and livestock can substantially reduce air pollutant emissions, particularly in the North China Plain. Our findings further provide the benefits of such interventions for PM2.5 reductions, offering valuable insights for policymakers.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Kevin K. W. Cheung, Fei Ji, Nidhi Nishant, Jin Teng, James Bennett, and De Li Liu
Hydrol. Earth Syst. Sci., 29, 3527–3543, https://doi.org/10.5194/hess-29-3527-2025, https://doi.org/10.5194/hess-29-3527-2025, 2025
Short summary
Short summary
This study evaluates two reanalysis datasets, which are critical in climate, weather research, and water resources analysis, for the Australian region in terms of simulating daily mean precipitation and six other selected precipitation extremes. While spatial patterns of mean precipitation are well reproduced, substantial biases exist in precipitation variability, trends, and extremes. Caution in applying these datasets is thus advised in terms of the latter aspects.
Tiangang Yuan, Tzung-May Fu, Aoxing Zhang, David H. Y. Yung, Jin Wu, Sien Li, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 4211–4232, https://doi.org/10.5194/acp-25-4211-2025, https://doi.org/10.5194/acp-25-4211-2025, 2025
Short summary
Short summary
This study utilizes a regional climate–air quality coupled model to first investigate the complex interaction between irrigation, climate and air quality in China. We found that large-scale irrigation practices reduce summertime surface ozone while raising secondary inorganic aerosol concentration via complicated physical and chemical processes. Our results emphasize the importance of making a tradeoff between air pollution controls and sustainable agricultural development.
Hemraj Bhattarai, Maria Val Martin, Stephen Sitch, David H. Y. Yung, and Amos P. K. Tai
EGUsphere, https://doi.org/10.5194/egusphere-2025-804, https://doi.org/10.5194/egusphere-2025-804, 2025
Short summary
Short summary
Wildfires are becoming more frequent and severe due to climate change, posing various risks. We explore how future climate conditions will influence global wildfire activity and carbon emissions by 2100. Using advanced computer modeling, we found that while some regions remain stable, boreal forests will see a major rise in burned area and emissions. These changes are driven by drier conditions and increased vegetation growth, highlighting the urgent need for better fire management strategies.
Amos P. K. Tai, Lina Luo, and Biao Luo
Atmos. Chem. Phys., 25, 923–941, https://doi.org/10.5194/acp-25-923-2025, https://doi.org/10.5194/acp-25-923-2025, 2025
Short summary
Short summary
We discuss our current understanding of and knowledge gaps in how agriculture and food systems affect air quality and how agricultural emissions can be mitigated. We argue that scientists need to address these gaps, especially as the importance of fossil fuel emissions is fading. This will help guide food-system transformation in economically viable, socially inclusive, and environmentally responsible ways and is essential to help society achieve sustainable development.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Ivana Čavlina Tomašević, Paul Fox-Hughes, Kevin Cheung, Višnjica Vučetić, Jon Marsden-Smedley, Paul Beggs, and Maja Telišman Prtenjak
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-210, https://doi.org/10.5194/nhess-2023-210, 2024
Manuscript not accepted for further review
Short summary
Short summary
We have analyzed a severe wildfire event in Tasmania, Australia that also developed thunderstorm clouds. The drivers of this compound hazard were highly complex, which included climatic factors (above normal heavy rain seasons followed by heatwave), weather systems (fronts and high winds) to heighten fire severity and unstable atmosphere to develop thunderstorm clouds, all in coincidence. Such event has demonstrated the difficulty to assess wildfire risk in a warming climate.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Mehliyar Sadiq, Paul I. Palmer, Mark F. Lunt, Liang Feng, Ingrid Super, Stijn N. C. Dellaert, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-816, https://doi.org/10.5194/acp-2021-816, 2021
Publication in ACP not foreseen
Short summary
Short summary
We make use of high-resolution emission inventory of CO2 and co-emitted tracers, satellite measurements, together with nested atmospheric transport model simulation, to investigate how reactive trace gases such as nitrogen dioxide and carbon monoxide can be used as proxies to determine the combustion contribution to atmospheric CO2 over Europe. We find stronger correlation in ratios of nitrogen dioxide and carbon dioxide between emission and satellite observed and modelled column concentration.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
Short summary
In recent years, summer O3 pollution over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 pollution can co-occur. However, the synoptic weather pattern (SWP) related to this compound pollution remains unclear. Regional PM2.5 and O3 compound pollution is characterized by various SWPs with different dominant factors. Our findings provide insights into the regional co-occurring high PM2.5 and O3 levels via the effects of certain meteorological factors.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Cited articles
Arora, V. K. and Montenegro, A.: Small benefits provided by realistic
afforestation efforts, Nat. Geosci., 4, 514–518,
https://doi.org/10.1038/ngeo1182, 2011.
Avnery S., Mauzerall D. L., Liu J., and Horowitz L. W.: Global crop yield
reductions due to surface ozone exposure: 2. Year 2030 potential crop
production losses and economic damage under two scenarios of O3 pollution,
Atmos. Environ., 45, 2297–2309,
https://doi.org/10.1016/j.atmosenv.2011.01.002, 2011.
Betts, R. A.: Biogeophysical impacts of land use on present-day climate:
near-surface temperature change and radiative forcing, Atmos. Sci. Lett., 2,
39–51, https://doi.org/10.1006/asle.2001.0023, 2001.
Boisier, J. P., de Noblet-Ducoudré, N., Pitman, A. J., Cruz, F. T.,
Delire, C., van den Hurk, B. J. J. M., van der Molen, M. K., Müller, C., and Voldoire, A.: Attributing the
impacts of land-cover changes in temperate regions on surface temperature
and heat fluxes to specific causes: Results from the first LUCID set of
simulations, J. Geophys. Res.-Atmos., 117, D12,
https://doi.org/10.1029/2011JD017106, 2012.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bonan, G. B.: Forests, Climate, and Public Policy: A 500-Year Interdisciplinary
Odyssey, Annu. Rev. Ecol. Evol. Syst., 47, 97–121,
https://doi.org/10.1146/annurev-ecolsys-121415-032359, 2016.
Brovkin, V., Boysen L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L.,
Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M.,
Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico,
F., Pongratz, J., and Weiss, M.: Effect of anthropogenic land-use and
land-cover changes on climate and land carbon storage in CMIP5 projections
for the twenty-first century, J. Climate, 26, 6859–6881,
https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.
Chase, T., Pielke, R., Kittel, T., Nemani, R., and Running, S.: Simulated
Impacts of Historical Land Cover Changes on Global Climate in Northern
Winter, Clim. Dynam., 16, 93–105, https://doi.org/10.1007/s003820050007,
2000.
Cooper, O. R., Parrish, D. D., Stohl, A., Trainer, M., Nédélec, P.,
Thouret, V., Cammas, J. P., Oltmans, S. J., Johnson, B. J., Tarasick, D., Leblanc, T., McDermid, I. S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A., and Avery, M. A.: Increasing springtime ozone mixing
ratios in the free troposphere over western North America, Nature, 463,
344–348, https://doi.org/10.1038/nature08708, 2010.
de Noblet-Ducoudré, N., Boisier, J. P., Pitman, A., Bonan, G. B.,
Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Strengers, B. J., and Voldoire, A.: Determining robust
impacts of land-use-induced land cover changes on surface climate over North
America and Eurasia: Results from the first set of LUCID experiments, J. Climate, 25, 3261–3281, https://doi.org/10.1175/JCLI-D-11-00338.1, 2012.
Deser, C., Knutti, R., Solomon, S., and Phillips, A.: Communication of the role
of natural variability in future North American Climate, Nat. Clim.
Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012.
Devaraju, N., Bala, G., and Modak, A.: Effects of large-scale deforestation on
precipitation in the monsoon regions: Remote versus local effects, P. Natl. Acad. Sci. USA,
112, 3257–3262, https://doi.org/10.1073/pnas.1423439112, 2015.
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A.,
Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz M.
G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change
on surface ozone and intercontinental ozone pollution: A multi-model study,
J. Geophys. Res.-Atmos., 118, 1–20, https://doi.org/10.1002/jgrd.50266,
2013.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Fiore, A. M., Horowitz, L. W., Purves, D. W., Levy II, H., Evans, M. J.,
Wang, Y., Li, Q., and Yantosca, M.: Evaluating the contribution of changes
in isoprene emissions to surface ozone trends over the eastern United
States, J. Geophys. Res.-Atmos., 110, D12303,
https://doi.org/10.1029/2004JD005485, 2005.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., and Bergmann, D.: Global air quality and climate, Chem. Soc. Rev., 41,
6663–6683, https://doi.org/10.1039/C2CS35095E, 2012.
Fu, Y. and Tai, A. P. K.: Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010, Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, 2015.
Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B.,
and Lelieveld, J.: Impact of future land use and land cover changes on
atmospheric chemistry-climate interactions, J. Geophys. Res.-Atmos., 115,
D23301, https://doi.org/10.1029/2010JD014041, 2010.
Govindasamy, B. and Caldeira, K.: Land use changes and Northern Hemisphere
cooling, Geophys. Res. Lett., 28, 291–294,
https://doi.org/10.1029/2000GL006121, 2001.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Heald, C. L. and Geddes, J. A.: The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone, Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, 2016.
Heald, C. L. and Spracklen, D. V.: Land use change impacts on air quality
and climate, Chem. Rev., 115, 4476–4496, https://doi.org/10.1021/cr500446g,
2015.
Heald C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. F., Goldstein, A. H., and
Fung, I.: Predicted change in global secondary organic aerosol
concentrations in response to future climate, emissions, and land use
change, J. Geophys. Res., 113, D05211, https://doi.org/10.1029/2007JD009092, 2008.
Henderson-Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J.,
McGuffie, K., and Pitman, A. J.: Tropical deforestation: Modeling local- to
regional-scale climate change, J. Geophys. Res.-Atmos., 98, 7289–7315,
https://doi.org/10.1029/92JD02830, 1993.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,
C. D., Kindermann, G., Kinoshita, T., Goldewijk, K. K., Riahi, K.,
Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van
Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the
period 1500–2100: 600 years of global gridded annual land-use transitions,
wood harvest, and resulting secondary lands, Climatic Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051,
2009.
Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski,
D., Shi, Y., Calle, E., and Thun, M.: Long-Term Ozone Exposure and
Mortality, New Engl. J. Med., 360, 1085–1095, https://doi.org/10.1056/NEJMoa0803894,
2009.
Jia, G., Shevliakova, E., Artaxo, P., de Noblet-Ducoudré, N., Houghton,
R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R.,
and Verchot, L.: Land-climate interactions, in: Climate Change and Land: an
IPCC special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E.,
Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade,
R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi,
S., Pathak, M., Petzold, D, Portugal Pereira, J., Vyas, P., Huntley, E.,
Kissick, K., Belkacemi, M., and Malley, J., in press, 2019.
Jiang, X., Wiedinmyer, C., Chen, F., Yang, Z.-L., and Lo, J. C.-F.:
Predicted impacts of climate and land use change on surface ozone in the
Houston, Texas, area, J. Geophys. Res., 113, D20312,
https://doi.org/10.1029/2008JD009820, 2008.
Kang, D., Aneja, V. P., Mathur, R., and Ray, J. D.: Nonmethane hydrocarbons
and ozone in three rural southeast United States national parks: A model
sensitivity analysis and comparison to measurements, J. Geophys. Res., 108,
4604, https://doi.org/10.1029/2002JD003054, 2003.
Kubistin, D., Harder, H., Martinez, M., Rudolf, M., Sander, R., Bozem, H., Eerdekens, G., Fischer, H., Gurk, C., Klüpfel, T., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Taraborrelli, D., Williams, J., and Lelieveld, J.: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA, Atmos. Chem. Phys., 10, 9705–9728, https://doi.org/10.5194/acp-10-9705-2010, 2010.
Kroeger, T., Escobedo, F. J., Hernandez, J. L., Varela, S., Delphin, S., Fisher, J. R. B., and Waldron, J.: Reforestation as a novel abatement and compliance measure for ground-level ozone, P. Natl. Acad. Sci. USA, 111, 4204–4213, https://doi.org/10.1073/pnas.1409785111, 2014.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Laguë, M. and Swann, A. S.: Progressive midlatitude afforestation:
Impacts on clouds, global energy transport, and precipitation, J. Climate, 29,
5561–5573, https://doi.org/10.1175/JCLI-D-15-0748.1, 2016.
Laguë, M. M., Bonan, G. B., and Swann, A. S.: Separating the impact of
individual land surface properties on the terrestrial surface energy budget
in both the coupled and un-coupled land-atmosphere system, J. Climate,
32, 5725–5744, https://doi.org/10.1175/JCLI-D-18-0812.1, 2019.
Lapina, K., Henze, D. K., Milford, J. B., Huang, M., Lin, M., Fiore, A. M.,
Carmichael, G., Pfister, G. G., and Bowman, K.: Assessment of source
contributions to seasonal vegetative expo- sure to ozone in the US, J.
Geophys. Res.-Atmos., 119, 324–340, https://doi.org/10.1002/2013JD020905,
2014.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, https://doi.org/10.5194/acp-6-2129-2006, 2006.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization Improvements and Functional and
Structural Advances in Version 4 of the Community Land Model, J. Adv. Model.
Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O'Neill, B. C.,
Levis, S., Lawrence, D. M., Oleson, K. W., Kluzek, E., Lindsay, K., and
Thorton, P. E.: Simulating the Biogeochemical and Biogeophysical Impacts of
Transient Land Cover Change and Wood Harvest in the Community Climate System
Model (CCSM4) from 1850 to 2100, J. Climate, 25, 3071–3095,
https://doi.org/10.1175/JCLI-D-11-00256.1, 2012.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer,
G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, T. K., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.: Observed increase in local cooling effect of
deforestation at higher latitudes, Nature, 479, 384–387,
https://doi.org/10.1038/nature10588, 2011.
Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G.: US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate, Atmos. Chem. Phys., 17, 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, 2017.
Lin, M., Malyshev, S., Shevliakova, E., Paulot, F., Horowitz, L. W., Fares, S., Mikkelsen, T. N., and Zhang, L.: Sensitivity of ozone
dry deposition to ecosystem-atmosphere interactions: A critical appraisal of
observations and simulations, Global Biogeochem. Cy., 33, 1264–1288,
https://doi.org/10.1029/2018GB006157, 2019.
Malley, C. S., Henze, D. K., Kuylenstierna, J. C. I., Vallack, H. W.,
Davila, Y., Anenberg, S. C., Turner, M. C., and Ashmore, M. R.: Updated
global estimates of respiratory mortality in adults ≥30 years of age
attributable to long-term ozone exposure, Environ. Health Perspect., 125,
087021, https://doi.org/10.1289/EHP1390, 2017.
Matthews, H. D. D., Weaver, A. J. J., Meissner, K. J. J., Gillett, N. P. P., and Eby,
M.: Natural and anthropogenic climate change: incorporating historical land
cover change, vegetation dynamics and the global carbon cycle, Clim. Dynam.,
22, 461–479, https://doi.org/10.1007/s00382-004-0392-2, 2004.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
UK and New York, NY, USA, 2013.
Occupational and Environmental Health Team (World Health Organization): WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment, World Health Organization, available at: https://apps.who.int/iris/handle/10665/69477 (last access: 20 September 2020), 2006.
Oleson, K. W., Lawrence D. W., and Bonan, G. B.: Technical description of
version 4.5 of the Community Land Model (CLM). NCAR Technical Note
NCAR/TN-503+STR, National Centre for Atmospheric Research, Boulder, USA,
2013.
Parrish, D. D., Lamarque, J. F., Naik, V., Horowitz, L., Shin- dell, D. T.,
Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A.,
and Gilge, S.: Long-term changes in lower tropospheric baseline ozone
concentrations: Comparing chemistry-climate models and observations at
northern midlatitudes, J. Geophys. Res.-Atmos., 119, 5719–5736,
https://doi.org/10.1002/2013JD021435, 2014.
Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J.-F., Orlando, J. J.,
Walters, S., Guenther, A., Palmer, P. I., and Lawrence, P. J.: Contribution
of isoprene to chemical budgets: A model tracer study with the NCAR CTM
MOZART-4, J. Geophys. Res., 113, D05308,
https://doi.org/10.1029/2007JD008948, 2008.
Pitman, A. J., de Noblet-Ducoudre, N., Cruz, F. T., Davin, E. L., Bonan, G.
B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., Gayler, V., van
den Hurk, B., Lawrence, P. J., van der Molen, M. K., Muller, C., Reick, C.
H., Seneviratne, S. I., Strengers, B. J., and Voldoire, A.: Uncertainties in
climate responses to past land cover change: First results from the LUCID
intercomparison study, Geophys. Res. Lett., 36, L14814,
https://doi.org/10.1029/2009GL039076, 2009.
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeophysical
versus biogeochemical climate response to historical anthropogenic land
cover change. Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043010, 2010.
Porter, W. C., Heald, C. L., Cooley, D., and Russell, B.: Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression, Atmos. Chem. Phys., 15, 10349–10366, https://doi.org/10.5194/acp-15-10349-2015, 2015.
Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and recent
trends in the chemistry of continental surface ozone, Chem. Rev., 115,
3898–3918, https://doi.org/10.1021/cr5006815, 2015.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the
planet: 1. Geographic distribution of global agricultural lands in the year
2000, Global Biogeochem. Cy., 22, GB1003,
https://doi.org/10.1029/2007GB002952, 2008.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, D002670,
https://doi.org/10.1029/2002JD002670, 2003.
Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term
socio-economic and environmental development under climate stabilization,
Technol. Forecast. Soc. Change, 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007.
Riahi, K., Krey, V., Rao, S., Chirkov, V., Fischer, G., Kolp, P.,
Kindermann, G., Nakicenovic, N., and Rafai, P.: RCP8.5-exploring the
consequence of high emission trajectories, Climatic Change, 109, 33,
https://doi.org/10.1007/s10584-011-0149-y, 2011.
Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks, Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, 2017.
Schnell, J. L., Prather, M. J., Josse, B., Naik, V., Horowitz, L. W., Zeng,
G., Shindell, D. T., and Faluvegi, G.: Effect of climate change on surface
ozone over North America, Europe, and East Asia, Geophys. Res. Lett., 43,
3509–3518, https://doi.org/10.1002/2016GL068060, 2016.
Shen, L., Mickley, L. J., and Gilleland, E.: Impact of increasing heat waves
on US ozone episodes in the 2050s: Results from a multimodel analysis using
extreme value theory, Geophys. Res. Lett., 43, 4017–4025,
https://doi.org/10.1002/2016GL068432, 2016.
Shevliakova, E., Stouffer, R. J., Malyshev, S., Krasting, J. P., Hurtt, G.
C., and Pacala, S. W. : Historical warming reduced due to enhanced land
carbon uptake, P. Natl. Acad. Sci. USA, 110, 16730–16735,
https://doi.org/10.1073/pnas.1314047110, 2013.
Simmons, C. T. and Matthews, H. D.: Assessing the implications of human
land-use change for the transient climate response to cumulative carbon
emissions, Environ. Res. Lett., 11, 035001, https://doi.org/10.1088/1748-9326/11/3/035001, 2016.
Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A.: Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, 2014.
Swann, A. L. S., Fung, I. Y., and Chiang, J. C. H.: Mid-latitude
afforestation shifts general circulation and tropical precipitation, P.
Natl. Acad. Sci. USA, 109, 712–716,
https://doi.org/10.1073/pnas.1116706108, 2012.
Tai, A. P. K. and Val Martin, M.: Impacts of ozone air pollution and
temperature extremes on crop yields: Spatial variability, adaptation and
implications for future food security, Atmos. Environ., 169, 11–21,
https://doi.org/10.1016/j.atmosenv.2017.09.002, 2017.
Tai, A. P. K., Mickley, L. J., Heald, C. L., and Wu, S.: Effect of CO2
inhibition on biogenic isoprene emission: Implications for air quality under
2000 to 2050 changes in climate, vegetation, and land use, Geophys. Res.
Lett., 40, 3479–3483, https://doi.org/10.1002/grl.50650, 2013.
Tai, A. P. K., Val Martin, M. and Heald, C. L.: Threat to Future Global Food
Security from Climate Change and Ozone Air Pollution, Nat. Clim. Change, 4,
817–821, https://doi.org/10.1038/nclimate2317, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel,
P., Delgado-Arias, S., and Bond-Lamberty, B.: RCP4.5: a pathway for
stabilization of radiative forcing by 2100, Climatic Change, 109, 77–94,
https://doi.org/10.1007/s10584-011-0151-4, 2011.
Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H.,
Brune, W. H., Williams, E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S.
R., Shetter, R. E., Wert, B. P., and Fried, A.: Ozone production rates as a
function of NOx abundances and HOx production rates in the Nashville urban
plume, J. Geophys. Res., 107, 4146, https://doi.org/10.1029/2001JD000932,
2002.
Tian, H., Ren, W., Tao, B., Sun, G., Chappelka, A., Wang, X., Pan, S., Yang,
J., Liu, J., Felzer, B., Melillo, J., and Reilly, J.: Climate extremes and
ozone pollution: a growing threat to China's food security, Ecosyst. Health
Sustain., 2, e01203, https://doi.org/10.1002/ehs2.1203, 2016.
Tilmes, S.: GEOS5 Global Atmosphere Forcing Data. Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, available at: http://rda.ucar.edu/datasets/ds313.0/ (last access: 20 September 2020), 2016.
Unger, N.: Human land-use-driven reduction of forest volatiles cools global
climate, Nat. Clim. Change, 4, 907–910,
https://doi.org/10.1038/nclimate2347, 2014.
Val Martin, M., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to
vegetation phenology in the Community Earth System Model: Implications for
the simulation of surface O3, Geophys. Res. Lett., 41, 2988–2996,
https://doi.org/10.1002/2014GL059651, 2014.
Val Martin, M., Heald, C. L., Lamarque, J.-F., Tilmes, S., Emmons, L. K., and Schichtel, B. A.: How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks, Atmos. Chem. Phys., 15, 2805–2823, https://doi.org/10.5194/acp-15-2805-2015, 2015.
van der Molen, M. K., van den Hurk, B. J. J. M., and Hazeleger, W.: A
dampened land use change climate response towards the tropics, Clim. Dynam.,
37, 2035–2043, https://doi.org/10.1007/s00382-011-1018-0, 2011.
van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B.,
Strengers, B. J., van Ruijven, B., Wonink, S., and van Houdt, R.:
Stabilizing greenhouse gas concentrations at low levels: an assessment of
reduction strategies and costs, Climatic Change, 81, 119–159,
https://doi.org/10.1007/s10584-006-9172-9, 2007.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Verbeke, T., Lathière, J., Szopa, S., and de Noblet-Ducoudré, N.: Impact of future land-cover changes on HNO3 and O3 surface dry deposition, Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, 2015.
von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J.: Sensitivities in global scale modeling of isoprene, Atmos. Chem. Phys., 4, 1–17, https://doi.org/10.5194/acp-4-1-2004, 2004.
Wang, L.: Datasets, availalble at:
https://drive.google.com/drive/folders/1ThA3S_jOPezgU5NDKDzy-oRHwf_CpwgA?usp=sharing, last access: 20 September 2020.
Wang, Y., Zhang, Y., Hao, J., and Luo, M.: Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution, Atmos. Chem. Phys., 11, 3511–3525, https://doi.org/10.5194/acp-11-3511-2011, 2011.
Wang, Y., Shen, L., Wu, S., Mickley, L., He, J., and Hao, J.: Sensitivity of
surface ozone over China to 2000–2050 global changes of climate and
emissions, Atmos. Environ., 75, 374–382,
https://doi.org/10.1016/j.atmosenv.2013.04.045, 2013.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R.,
Smith, S., J., Janetos, A., and Edmonds, J.: Implication of limiting CO2
concentrations for land use and energy, Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009a.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Sands, R., Smith, S. J.,
Janetos, A., and Edmonds, J.: The Implications of Limiting CO2
Concentrations for Agriculture, Land-use Change Emissions, and Bioenergy,
Technical Report, DOE Pacific Northwest National Laboratory, Richland, WA, USA, 2009b.
Wong, A. Y. H., Tai, A. P. K., and Ip, Y.-Y.: Attribution and statistical
parameterization of the sensitivity of surface ozone to changes in leaf area
index based on a chemical transport model, J. Geophys. Res.-Atmos., 123,
1883–1898, https://doi.org/10.1002/2017JD027311, 2018.
Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J.: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century, Atmos. Chem. Phys., 12, 1597–1609, https://doi.org/10.5194/acp-12-1597-2012, 2012.
Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R., and Xu, Z.:
Increasing external effects negate local efforts to control ozone air
pollution: A case study of Hong Kong and implications for other Chinese
cities, Environ. Sci. Technol., 48, 10769–10775,
https://doi.org/10.1021/es503278g, 2014.
Yienger, J. J. and Levy II H.: Empirical model of global soil-biogenic NOx
emissions, J. Geophys. Res.-Atmos., 100, 11447–11464,
https://doi.org/10.1029/95JD00370, 1995.
Yue, X. and Unger, N.: Ozone vegetation damage effects on gross primary productivity in the United States, Atmos. Chem. Phys., 14, 9137–9153, https://doi.org/10.5194/acp-14-9137-2014, 2014.
Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang, C.-C., and Liu, S. C.: Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011, Atmos. Chem. Phys., 14, 6089–6101, https://doi.org/10.5194/acp-14-6089-2014, 2014.
Zhou, D., Ding, A., Mao, H., Fu, C., Wang, T., Chan, L. Y., Ding, K., Zhang,
Y., Liu, J., Lu, A., and Hao, N.: Impacts of the East Asian monsoon on lower
tropospheric ozone over coastal South China, Environ. Res. Lett., 8, 044011,
https://doi.org/10.1088/1748-9326/8/4/044011, 2013.
Short summary
We investigate the effects of future land use and land cover change (LULCC) on surface ozone air quality worldwide and find that LULCC can significantly influence ozone in North America and Europe via modifying surface energy balance, boundary-layer meteorology, and regional circulation. The strength of such “biogeophysical effects” of LULCC is strongly dependent on forest type and generally greater than the “biogeochemical effects” via changing deposition and emission fluxes alone.
We investigate the effects of future land use and land cover change (LULCC) on surface ozone air...
Altmetrics
Final-revised paper
Preprint