Articles | Volume 20, issue 18
https://doi.org/10.5194/acp-20-11065-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-11065-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Sally S.-C. Wang
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, Texas 77024, USA
now at: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, Texas 77024, USA
Related authors
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Preprint under review for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Preprint under review for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Claudia Bernier, Yuxuan Wang, Guillaume Gronoff, Timothy Berkoff, K. Emma Knowland, John T. Sullivan, Ruben Delgado, Vanessa Caicedo, and Brian Carroll
Atmos. Chem. Phys., 22, 15313–15331, https://doi.org/10.5194/acp-22-15313-2022, https://doi.org/10.5194/acp-22-15313-2022, 2022
Short summary
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 22, 7843–7859, https://doi.org/10.5194/acp-22-7843-2022, https://doi.org/10.5194/acp-22-7843-2022, 2022
Short summary
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Lu Shen, Daniel J. Jacob, Loretta J. Mickley, Yuxuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 17489–17496, https://doi.org/10.5194/acp-18-17489-2018, https://doi.org/10.5194/acp-18-17489-2018, 2018
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael B. McElroy
Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, https://doi.org/10.5194/acp-18-7423-2018, 2018
Short summary
Short summary
Severe haze events occur frequently over northern China, especially in winter. Acidity plays a critical role in the formation of secondary PM2.5 and its toxicity. Using field measurements of gases and particles to critically evaluate two thermodynamic models routinely employed to determine particle acidity, we found that China's winter haze particles are generally within a moderately acidic range (pH 4–5) and not highly acidic (0) or neutral (7) as has been previously reported in the literature.
Yuxuan Wang, Yuanyu Xie, Wenhao Dong, Yi Ming, Jun Wang, and Lu Shen
Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, https://doi.org/10.5194/acp-17-12827-2017, 2017
Short summary
Short summary
Besides the well-known large impact on agriculture and water resources, drought is associated with significant adverse effects on air quality. Drought-induced degradation of air quality is largely due to natural processes, offsetting the effort of anthropogenic emission reduction during the past decades. Such adverse impacts should be included in modeling processes under current and future climate for mitigation policy.
Yuxuan Wang, Beixi Jia, Sing-Chun Wang, Mark Estes, Lu Shen, and Yuanyu Xie
Atmos. Chem. Phys., 16, 15265–15276, https://doi.org/10.5194/acp-16-15265-2016, https://doi.org/10.5194/acp-16-15265-2016, 2016
Short summary
Short summary
This paper provides empirical evidence that the year-to-year variability of summertime ozone over Houston is linked to the Bermuda High (BH) large-scale circulation patterns. It identifies two BH indices that can explain up to 70 % of the interannual variability of summertime ozone in Houston and illustrates the mechanism underlying the BH and ozone linkage. Such a mechanism is tested for applicability to other coastal urban regions along the US Gulf Coast.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
Y. Wang, Q. Q. Zhang, K. He, Q. Zhang, and L. Chai
Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, https://doi.org/10.5194/acp-13-2635-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe
Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US
Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE
Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling
Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem
Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes
Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
Improved gridded ammonia emission inventory in China
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Indirect contributions of global fires to surface ozone through ozone–vegetation feedback
Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model
A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Data assimilation using an ensemble of models: a hierarchical approach
Fundamentals of data assimilation applied to biogeochemistry
On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?
Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network
Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America
Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia
Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health
Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños
Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015
Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling
Wildfire air pollution hazard during the 21st century
Ozone and haze pollution weakens net primary productivity in China
How can mountaintop CO2 observations be used to constrain regional carbon fluxes?
Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks
Impact of Siberian observations on the optimization of surface CO2 flux
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone
Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia
Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia
Air quality impacts of European wildfire emissions in a changing climate
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States
High-resolution ammonia emissions inventories in China from 1980 to 2012
Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean
Impact of future land-cover changes on HNO3 and O3 surface dry deposition
Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010
Relationships between photosynthesis and formaldehyde as a probe of isoprene emission
A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy
Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study
Influence of CO2 observations on the optimized CO2 flux in an ensemble Kalman filter
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Julius Vira, Peter Hess, Money Ossohou, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, https://doi.org/10.5194/acp-22-1883-2022, 2022
Short summary
Short summary
Ammonia is one of the main components of nitrogen deposition. Here we use a new model to assess the ammonia emissions from agriculture, the largest anthropogenic source of ammonia. The model results are consistent with earlier estimates over industrialized regions in agreement with observations. However, the model predicts much higher emissions over sub-Saharan Africa compared to earlier estimates. Available observations from surface stations and satellites support these higher emissions.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Ditte Taipale, Veli-Matti Kerminen, Mikael Ehn, Markku Kulmala, and Ülo Niinemets
Atmos. Chem. Phys., 21, 17389–17431, https://doi.org/10.5194/acp-21-17389-2021, https://doi.org/10.5194/acp-21-17389-2021, 2021
Short summary
Short summary
Larval feeding and fungal infections of leaves can greatly change the emission of volatile compounds from plants and thereby influence aerosol processes in the air. We developed a model that considers the dynamics of larvae and fungi and the dependency of the emission on the severity of stress. We show that the infections can be highly atmospherically relevant during long periods of time and at times more important to consider than the parameters that are currently used in emission models.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, https://doi.org/10.5194/acp-21-15883-2021, 2021
Short summary
Short summary
This study focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a NH3 emission inventory for mainland China in 2016. The inventory showed a higher level of accuracy than other inventories based on evaluation using the WRF-Chem and observation data.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020, https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary
Short summary
Australian cities with a high biogenic influence will see higher pollution levels in a warmer climate. We show that four Eucalyptus species grown in future-climate conditions can emit isoprene at temperatures 9 K above the peak temperatures capping isoprene in biogenic-emission models. With these measurements, we predict up to 2 ppb increases in isoprene in 2050, causing up to 21 ppb of ozone and 0.4 µg m−3 of aerosol in Sydney. The ozone increase is one-fifth of the hourly air quality limit.
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737, https://doi.org/10.5194/acp-20-3725-2020, https://doi.org/10.5194/acp-20-3725-2020, 2020
Short summary
Short summary
This work extends previous calculations of carbon dioxide sources and sinks to take account of the varying quality of atmospheric models. It uses an extended version of Bayesian statistics which includes the model as one of the unknowns. I performed the work as an example of including the model in the description of the uncertainty.
Peter J. Rayner, Anna M. Michalak, and Frédéric Chevallier
Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, https://doi.org/10.5194/acp-19-13911-2019, 2019
Short summary
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, https://doi.org/10.5194/acp-18-17963-2018, 2018
Kandice L. Harper and Nadine Unger
Atmos. Chem. Phys., 18, 16931–16952, https://doi.org/10.5194/acp-18-16931-2018, https://doi.org/10.5194/acp-18-16931-2018, 2018
Short summary
Short summary
Chemistry–climate modeling finds that the induced global-mean ozone forcing for 1990–2010 maritime Southeast Asian land cover change, including expansion of high-isoprene-emitting oil palm plantations, is +9.2 mW m−2. Regional land cover change drove stronger global-mean ozone enhancements in the upper troposphere than in the lower troposphere. The results indicate that this mechanism of ozone forcing may increase in importance in future years if regional oil palm expansion continues unabated.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Wolfgang Knorr, Frank Dentener, Jean-François Lamarque, Leiwen Jiang, and Almut Arneth
Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, https://doi.org/10.5194/acp-17-9223-2017, 2017
Short summary
Short summary
Wildfires cause considerable air pollution, and climate change is usually expected to increase both wildfire activity and air pollution from those fires. This study takes a closer look at the problem by examining the role of demographic changes in addition to climate change. It finds that demographics will be the main driver of changes in wildfire activity in many parts of the developing world. Air pollution from wildfires will remain significant, with major implications for air quality policy.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Short summary
Surface ozone harms vegetation, which can influence not only climate but also ozone air quality itself. We implement a scheme for ozone damage on vegetation into an Earth system model, so that for the first time simulated vegetation and ozone can coevolve in a fully coupled simulation. With ozone–vegetation coupling, simulated ozone is found to be significantly higher by up to 6 ppbv. Reduced dry deposition and enhanced isoprene emission contribute to most of these increases.
Jinwoong Kim, Hyun Mee Kim, Chun-Ho Cho, Kyung-On Boo, Andrew R. Jacobson, Motoki Sasakawa, Toshinobu Machida, Mikhail Arshinov, and Nikolay Fedoseev
Atmos. Chem. Phys., 17, 2881–2899, https://doi.org/10.5194/acp-17-2881-2017, https://doi.org/10.5194/acp-17-2881-2017, 2017
Short summary
Short summary
To investigate the effect of CO2 observations in Siberia on the surface CO2 flux analyses, two experiments using observation data sets with and without Siberian measurements were performed. While the magnitude of the optimized surface CO2 flux uptake in Siberia decreased, that in the other regions of the Northern Hemisphere increased for the experiment with Siberian observations. It is expected that the Siberian observations play an important role in estimating surface CO2 flux in the future.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Wolfgang Knorr, Frank Dentener, Stijn Hantson, Leiwen Jiang, Zbigniew Klimont, and Almut Arneth
Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, https://doi.org/10.5194/acp-16-5685-2016, 2016
Short summary
Short summary
Wildfires are generally expected to increase in frequency and severity due to climate change. For Europe this could mean increased air pollution levels during the summer. Until 2050, predicted changes are moderate, but under a scenario of strong climate change, these may increase considerably during the later part of the current century. In Portugal and several parts of the Mediterranean, emissions may become relevant for meeting WHO concentration targets.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
Jeffrey A. Geddes, Colette L. Heald, Sam J. Silva, and Randall V. Martin
Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, https://doi.org/10.5194/acp-16-2323-2016, 2016
Short summary
Short summary
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g., forestry management, agriculture, wildfires) can impact climate and air quality in many complex ways. Using a state-of-the-art chemistry model, we investigate how tree mortality in the US due to insect infestation and disease outbreak may impact atmospheric composition. We find that the surface concentrations of ozone and aerosol can be altered due to changing background emissions and loss processes.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
A. Ito and Z. Shi
Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, https://doi.org/10.5194/acp-16-85-2016, 2016
Short summary
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
Y. Fu and A. P. K. Tai
Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, https://doi.org/10.5194/acp-15-10093-2015, 2015
Short summary
Short summary
Historical land cover and land use change alone between 1980 and 2010 could lead to reduced summertime surface ozone by up to 4ppbv in East Asia. Climate change alone could lead to an increase in summertime ozone by 2-10ppbv in most of East Asia. Land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. The sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia.
Y. Zheng, N. Unger, M. P. Barkley, and X. Yue
Atmos. Chem. Phys., 15, 8559–8576, https://doi.org/10.5194/acp-15-8559-2015, https://doi.org/10.5194/acp-15-8559-2015, 2015
Short summary
Short summary
We apply two global observational data sets, gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv), to probe isoprene emission variability on large spatiotemporal scales. GPP and HCHOv are decoupled or weakly anticorrelated in regions and seasons when isoprene emission is high. Isoprene emission models that include soil moisture dependence demonstrate greater skill in reproducing observed seasonal GPP-HCHOv correlations in the southeast US and the Amazon.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
J. Kim, H. M. Kim, and C.-H. Cho
Atmos. Chem. Phys., 14, 13515–13530, https://doi.org/10.5194/acp-14-13515-2014, https://doi.org/10.5194/acp-14-13515-2014, 2014
Cited articles
Amatulli, G., Camia, A., and San-Miguel-Ayanz, J.: Estimating future burned
areas under changing climate in the EU-Mediterranean countries, Sci. Total Environ., 450/451, 209–222,
https://doi.org/10.1016/j.scitotenv.2013.02.014, 2013.
An, H., Gan, J., and Cho, S. J.: Assessing Climate Change Impacts on Wildfire
Risk in the United States, Forests, 6, 3197–3211, https://doi.org/10.3390/f6093197,
2015.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Werf, G. R. van der,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Mangeon, S., Melton, J. R., Yue, C.,
and Randerson, J. T.: A human-driven decline in global burned area, Science,
356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Baboo, S. and Devi, R.: An Analysis of Different Resampling Methods in
Coimbatore, District, Global Journal of Computer Science and Technology,
10, 61–66, 2010.
Balshi, M. S., McGUIRE, A. D., Duffy, P., Flannigan, M., Walsh, J., and
Melillo, J.: Assessing the response of area burned to changing climate in
western boreal North America using a Multivariate Adaptive Regression
Splines (MARS) approach, Glob. Change Biol., 15, 578–600,
https://doi.org/10.1111/j.1365-2486.2008.01679.x, 2009.
Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A., and Stocks, B.:
Climate change presents increased potential for very large fires in the
contiguous United States, Int. J. Wildland Fire, 24, 892–899,
https://doi.org/10.1071/WF15083, 2015.
Barrett, S., Havlina, D., Jones, J., Hann, W., Frame, C., Hamilton, D.,
Schon, K., Demeo, T., Hutter, L., and Menakis, J.: Interagency Fire Regime
Condition Class Guidebook, United States Forest Service and U.S. Department
of the Interior, The Nature Conservancy, U.S., 98–125, 2010.
Bedia, J., Herrera, S., and Gutiérrez, J. M.: Assessing the
predictability of fire occurrence and area burned across phytoclimatic
regions in Spain, Nat. Hazards Earth Syst. Sci., 14, 53–66,
https://doi.org/10.5194/nhess-14-53-2014, 2014.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,
Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C.,
Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth
System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009.
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
D'Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M.
A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A.
C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on
Earth, J. Biogeogr., 38, 2223–2236,
https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011.
Camia, A. and Amatulli, G.: Weather Factors and Fire Danger in the
Mediterranean, Earth Observation of Wildland Fires in Mediterranean
Ecosystems, 71–82, https://doi.org/10.1007/978-3-642-01754-4_6, 2010.
Carvalho, A., Logan, Miranda, A., and Borrego, C.: Fire activity
in Portugal and its relationship to weather and the Canadian Fire Weather
Index System, Int. J. Wildland Fire, 17, 328–338,
https://doi.org/10.1071/WF07014, 2008.
Chen, J. M. and Black, T. A.: Defining leaf area index for non-flat leaves,
Plant Cell Environ., 15, 421–429,
https://doi.org/10.1111/j.1365-3040.1992.tb00992.x, 1992.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Association for Computing
Machinery, San Francisco, California, USA, 785–794, 2016.
Chen, Y., Morton, D. C., Andela, N., Giglio, L., and Randerson, J. T.: How
much global burned area can be forecast on seasonal time scales using sea
surface temperatures?, Environ. Res. Lett., 11, 045001,
https://doi.org/10.1088/1748-9326/11/4/045001, 2016.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013.
Duane, A., Kelly, L., Gijohann, K., Batllori, E., McCarthy, M., and Brotons,
L.: Disentangling the Influence of Past Fires on Subsequent Fires in
Mediterranean Landscapes, Ecosystems, 22, 1338–1351,
https://doi.org/10.1007/s10021-019-00340-6, 2019.
Fang, L., Yang, J., Zu, J., Li, G., and Zhang, J.: Quantifying influences and
relative importance of fire weather, topography, and vegetation on fire size
and fire severity in a Chinese boreal forest landscape, Forest Ecol.
Manag., 356, 2–12, https://doi.org/10.1016/j.foreco.2015.01.011, 2015.
Fann, N., Alman, B., Broome, R. A., Morgan, G. G., Johnston, F. H., Pouliot,
G., and Rappold, A. G.: The health impacts and economic value of wildland
fire episodes in the U.S.: 2008-2012, Sci. Total Environ., 610–611,
802–809, https://doi.org/10.1016/j.scitotenv.2017.08.024, 2018.
Fernandes, P. M., Monteiro-Henriques, T., Guiomar, N., Loureiro, C., and
Barros, A. M. G.: Bottom-Up Variables Govern Large-Fire Size in Portugal,
Ecosystems, 19, 1362–1375, https://doi.org/10.1007/s10021-016-0010-2, 2016.
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B.
J.: Future area burned in Canada, Climate Change, 72, 1–16, https://doi.org/10.1007/s10584-005-5935-y, 2005.
Flannigan, M. D., Krawchuk, M. A., Groot, W. J. de, Wotton, B. M., and
Gowman, L. M.: Implications of changing climate
for global wildland fire, Int. J. Wildland Fire, 18, 483–507,
https://doi.org/10.1071/WF08187, 2009.
Fréjaville, T. and Curt, T.: Seasonal changes in the human alteration of
fire regimes beyond the climate forcing, Environ. Res. Lett., 12, 035006,
https://doi.org/10.1088/1748-9326/aa5d23, 2017.
Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine,
Ann. Stat., 29, 1189–1232, 2001.
Gudmundsson, L., Rego, F. C., Rocha, M., and Seneviratne, S. I.: Predicting
above normal wildfire activity in southern Europe as a function of
meteorological drought, Environ. Res. Lett., 9, 084008,
https://doi.org/10.1088/1748-9326/9/8/084008, 2014.
Heilman, W. E., Potter, B. E., and Zerbe J. I.: Regional climate change in the
southern United States: The implications for wildfire occurrence in the
Productivity and Sustainability of Southern Forest Ecosystems in a Changing
Environment, New York, Springer-Verlag, 683–699, 1998.
Heyerdahl, E. K., McKenzie, D., Daniels, L. D., Hessl, A. E., Littell, J. S.,
and Mantua, N. J.: Climate drivers of regionally synchronous fires in the
inland northwest (1651–1900), Int. J. Wildland Fire, 17,
40–49, 2008.
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J.
W., Warren, D. A., Parsons, R., and Affleck, D.: Decreasing fire season
precipitation increased recent western US forest wildfire activity, P. Natl. Acad. Sci. USA,
115, E8349–E8357, https://doi.org/10.1073/pnas.1802316115, 2018.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass,
L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.:
Conterminous United States land cover change patterns 2001–2016 from the
2016 National Land Cover Database, ISPRS J. Photogramm.
Remote Sens., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Jaffe, D., Hafner, W., Chand, D., Westerling, A., and Spracklen, D.:
Interannual Variations in PM2.5 due to Wildfires in the Western United
States, Environ. Sci. Technol., 42, 2812–2818, https://doi.org/10.1021/es702755v,
2008.
Jones, J., Saginor, A., and Smith, B.: 2011 Texas Wildfires: Common
Denominators of Home Destruction, College Station, TX, Texas A&M Forest
Service, 2013.
Keane, R. E., Reinhardt, E. D., Scott, J., Gray, K., and Reardon, J.:
Estimating forest canopy bulk density using six indirect methods, Canadian
J. Forest Res., 35, 724–739, https://doi.org/10.1139/x04-213, 2005.
Keyser, A. and Westerling, A. L.: Climate drives inter-annual variability in
probability of high severity fire occurrence in the western United States,
Environ. Res. Lett., 12, 065003, https://doi.org/10.1088/1748-9326/aa6b10, 2017.
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., and
Anslow, F. S.: Attribution of the Influence of Human-Induced Climate Change
on an Extreme Fire Season, Earth's Future, 7, 2–10,
https://doi.org/10.1029/2018EF001050, 2018.
Krawczyk, B.: Learning from imbalanced data: open challenges and future
directions, Prog. Artif. Intell., 5, 221–232,
https://doi.org/10.1007/s13748-016-0094-0, 2016.
Krueger, E. S., Ochsner, T. E., Carlson, J. D., Engle, D. M., Twidwell, D.,
and Fuhlendorf, S. D.: Concurrent and antecedent soil moisture relate
positively or negatively to probability of large wildfires depending on
season, Int. J. Wildland Fire, 25, 657–668, https://doi.org/10.1071/WF15104, 2016.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, 2002.
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate
and wildfire area burned in western U.S. ecoprovinces, 1916–2003,
Ecol. Appl., 19, 1003–1021, https://doi.org/10.1890/07-1183.1, 2009.
Liu, Y., Goodrick, S. L., Stanturf, J. A.: Future U.S. wildfire potential
trends projected using a dynamically downscaled climate change scenario,
Forest Ecol. Manag., 294, 120–135,
https://doi.org/10.1016/j.foreco.2012.06.049, 2013.
Liu, Z. and Wimberly, M. C.: Climatic and Landscape Influences on Fire
Regimes from 1984 to 2010 in the Western United States, PLOS ONE, 10,
e0140839, https://doi.org/10.1371/journal.pone.0140839, 2015.
Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., and
Save, H.: GRACE satellite monitoring of large depletion in water storage in
response to the 2011 drought in Texas, Geophys. Res. Lett., 40,
3395–3401, https://doi.org/10.1002/grl.50655, 2013.
Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. K., Berck, P., Flint,
A. L., Flint, L. E., and Dolfi, E.: Incorporating Anthropogenic Influences
into Fire Probability Models: Effects of Human Activity and Climate Change
on Fire Activity in California, PLOS ONE, 11, e0153589,
https://doi.org/10.1371/journal.pone.0153589, 2016.
Meinshausen, N.: Quantile Regression Forests, J. Mach. Learn.
Res., 7, 983–999, 2006.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American Regional Reanalysis, B. Am.
Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Metz, C. E.: Basic principles of ROC analysis, Semin. Nucl. Med., 8,
283–298, https://doi.org/10.1016/s0001-2998(78)80014-2, 1978.
Mocko, D.: NASA/GSFC/HSL, NLDAS Noah Land Surface Model L4 Monthly
Climatology 0.125 × 0.125 degree V002, Goddard Earth Sciences Data and
Information Services Center (GES DISC),
https://doi.org/10.5067/U5BAYF8R76IK, 2013.
Morgan, P., Heyerdahl, E. K., and Gibson, C. E.: Multi-season climate
synchronized forest fires throughout the 20th century, Northern Rockies,
USA, Ecology, 89, 717–728, 2008.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS/Terra + Aqua Leaf Area
Index/FPAR 8-day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes
DAAC, https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015.
Nielsen-Gammon, J. W.: The 2011 Texas Drought, Texas Water J., 3,
59–95, 2012.
Nunes, M. C. S., Vasconcelos, M. J., Pereira, J. M. C., Dasgupta, N.,
Alldredge, R. J., and Rego, F. C.: Land Cover Type and Fire in Portugal: Do
Fires Burn Land Cover Selectively?, Landscape Ecol., 20, 661–673,
https://doi.org/10.1007/s10980-005-0070-8, 2005.
Omernik, J. M. (Ed.): Ecoregions: A spatial framework for environmental
management, in: Biological Assessment and Criteria: Tools for Water Resource
Planning and Decision Making, Lewis Publishers, Boca Raton, FL, 49–62, 1995.
Omernik, J. M. and Griffith, G. E.: Ecoregions of the conterminous United
States: evolution of a hierarchical spatial framework, Environ. Manage.,
54, 1249–1266, https://doi.org/10.1007/s00267-014-0364-1, 2014.
Parisien, M.-A., Parks, S. A., Krawchuk, M. A., Flannigan, M. D., Bowman, L.
M., and Moritz, M. A.: Scale-dependent controls on the area burned in the
boreal forest of Canada, 1980–2005, Ecol. Appl., 21, 789–805,
https://doi.org/10.1890/10-0326.1, 2011.
Parks, S. A., Parisien, M.-A., and Miller, C.: Spatial bottom-up controls on
fire likelihood vary across western North America, Ecosphere, 3, art12, https://doi.org/10.1890/ES11-00298.1, 2012.
Pausas, J. G. and Keeley, J. E.: A Burning Story: The Role of Fire in the
History of Life, BioScience, 59, 593–601, https://doi.org/10.1525/bio.2009.59.7.10,
2009.
Pellegrini, A. F. A., Anderegg, W. R. L., Paine, C. E. T., Hoffmann, W. A.,
Kartzinel, T., Rabin, S. S., Sheil, D., Franco, A. C., and Pacala, S. W.:
Convergence of bark investment according to fire and climate structures
ecosystem vulnerability to future change, Ecol. Lett., 20, 307–316,
https://doi.org/10.1111/ele.12725, 2017.
Peters, D. P. C., Pielke, R. A., Bestelmeyer, B. T., Allen, C. D.,
Munson-McGee, S., and Havstad, K. M.: Cross-scale interactions,
nonlinearities, and forecasting catastrophic events, P. Natl. Acad. Sci. USA, 101,
15130–15135, https://doi.org/10.1073/pnas.0403822101, 2004.
Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., and Heinsch,
F. A.: The relationship of large fire occurrence with drought and fire
danger indices in the western USA, 1984–2008: the role of temporal scale,
Int. J. Wildland Fire, 22, 894–909, https://doi.org/10.1071/WF12149,
2013.
Ruthrof, K. X., Fontaine, J. B., Matusick, G., Breshears, D. D., Law, D. J.,
Powell, S., and Hardy, G.: How drought-induced forest die-off alters
microclimate and increases fuel loadings and fire potentials, Int. J.
Wildland Fire, 25, 819–830, https://doi.org/10.1071/WF15028, 2016.
Scott, J. H. and Burgan, R. E.: Standard fire behavior fuel models: a
comprehensive set for use with Rothermel's surface fire spread model, Gen.
Tech. Rep. RMRS-GTR-153, Fort Collins, CO: U.S. Department of Agriculture,
Forest Service, Rocky Mountain Research Station, 72 pp.,
https://doi.org/10.2737/RMRS-GTR-153, 2005.
Short, K. C.: A spatial database of wildfires in the United States,
1992–2011, Earth Syst. Sci. Data, 6, 1–27, https://doi.org/10.5194/essd-6-1-2014,
2014.
Short, K. C.: Spatial wildfire occurrence data for the United States,
1992–2015, Forest Service Research Data Archive, 4th Edn.,
https://doi.org/10.2737/RDS-2013-0009.4, 2017.
Siroky, D. S.: Navigating Random Forests and related advances in algorithmic
modeling, Statist. Surv., 3, 147–163, https://doi.org/10.1214/07-SS033, 2009.
Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L., and Taylor, W.:
Effect of Climate on Wildfire Size: A Cross-Scale Analysis, Ecosystems,
13, 828–840, https://doi.org/10.1007/s10021-010-9357-y, 2010.
Sousa, P. M., Trigo, R. M., and Pereira, M. G.: Different approaches to model
future burnt area in the Iberian Peninsula, Agr. Forest
Meteorol., 202, 11–25, https://doi.org/10.1016/j.agrformet.2014.11.018, 2015.
Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R.,
Flannigan, M. D., and Westerling, A. L.: Impacts of climate change from 2000
to 2050 on wildfire activity and carbonaceous aerosol concentrations in the
western United States, J. Geophys. Res.-Atmos.,
114, D20301, https://doi.org/10.1029/2008JD010966, 2009.
Steel, Z. L., Safford, H. D., and Viers, J. H.: The fire frequency-severity
relationship and the legacy of fire suppression in California forests,
Ecosphere, 6, 1–23, https://doi.org/10.1890/ES14-00224.1, 2015.
Steele-Feldman, A., Reinhardt, E., and Parsons, R. A.: Fuels Management-How
to Measure Success: Conference Proceedings, USDA Forest Proceedings,
283–291, 2006.
Swetnam, T. W. and Anderson, R. S.: Fire Climatology in the western United
States: introduction to special issue, Int. J. Wildland Fire, 17, 1–7,
https://doi.org/10.1071/WF08016, 2008.
Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M.
K., Stewart, S. I., and Hammer, R. B.: Human Influence on California Fire
Regimes, Ecol. Appl., 17, 1388–1402, https://doi.org/10.1890/06-1128.1,
2007.
Turco, M., Hardenberg, J. von, AghaKouchak, A., Llasat, M. C., Provenzale,
A., and Trigo, R. M.: On the key role of droughts in the dynamics of summer
fires in Mediterranean Europe, Sci. Rep., 7, p. 81,
https://doi.org/10.1038/s41598-017-00116-9, 2017.
Urbieta, I. R., Zavala, G., Bedia, J., Gutierrez, J. M., San Miguel-Ayanz,
J., Camia, A., Keeley, J. E., and Moreno, J. M.: Fire activity as a function
of fire–weather seasonal severity and antecedent climate across spatial
scales in southern Europe and Pacific western USA, Environ. Res.
Lett., 10, 114013, https://doi.org/10.1088/1748-9326/10/11/114013, 2015.
U.S. Census Bureau: Population Estimates, 2010 Census Population density, available at:
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2010.html (last access: 1 September 2018),
2010.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Clim., 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2009.
Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., and Hou, P.:
Transport of Central American Fire Emissions to the U.S. Gulf Coast:
Climatological Pathways and Impacts on Ozone and PM2.5, J.
Geophys. Res.-Atmos., 123, 8344–8361,
https://doi.org/10.1029/2018JD028684, 2018.
Wang, S.-C.: Replication Data for: Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques, available at: https://doi.org/10.7910/DVN/LRPDAA, last access: 30 September 2020.
Watson, D. J.: Comparative Physiological Studies on the Growth of Field
Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species
and Varieties, and within and between Years, Ann. Botany, 11, 41–76,
https://doi.org/10.1093/oxfordjournals.aob.a083148, 1947.
Westerling, A. L.: Increasing western US forest wildfire activity:
sensitivity to changes in the timing of spring, Philos. T.
R. Soc. B, 371, 20150178,
https://doi.org/10.1098/rstb.2015.0178, 2016.
Westerling, A. L. and Bryant, B. P.: Climate change and wildfire in
California, Climatic Change, 87, 231–249, https://doi.org/10.1007/s10584-007-9363-z,
2008.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and Earlier Spring Increase Western U.S. Forest Wildfire Activity, Science,
313, 940–943, https://doi.org/10.1126/science.1128834, 2006.
Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and
Ryan, M. G.: Continued warming could transform Greater Yellowstone fire
regimes by mid-21st century, P. Natl. Acad.
Sci. USA, 108, 13165–13170, https://doi.org/10.1073/pnas.1110199108, 2011.
White, L. D. and Hanselka, C. W.: Prescribed Range Burning in Texas, Texas AgriLife Extension Service Publication, College Station, Texas, 2000.
Williams, P. A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C.
A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R.,
Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M.,
and McDowell, N. G.: Temperature as a potent driver of regional forest
drought stress and tree mortality, Nat. Clim. Change, 3, 292–297,
https://doi.org/10.1038/nclimate1693, 2013.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo,
L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V.,
Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy
flux analysis and validation for the North American Land Data Assimilation
System project phase 2 (NLDAS-2): 1. Intercomparison and application of
model products, J. Geophys. Res.-Atmos., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012.
Yue, X., Mickley, L. J., Logan, J. A., and Kaplan, J. O.: Ensemble
projections of wildfire activity and carbonaceous aerosol concentrations
over the western United States in the mid-21st century, Atmos. Environ., 77, 767–780, https://doi.org/10.1016/j.atmosenv.2013.06.003, 2013.
Yue, X., Mickley, L. J., Logan, J. A., Hudman, R. C., Martin, M. V., and
Yantosca, R. M.: Impact of 2050 climate change on North American wildfire:
consequences for ozone air quality, Atmos. Chem. Phys.,
15, 10033–10055, https://doi.org/10.5194/acp-15-10033-2015, 2015.
Zhang, X., Kondragunta, S., and Roy, D. P.: Interannual variation in biomass
burning and fire seasonality derived from geostationary satellite data
across the contiguous United States from 1995 to 2011, J.
Geophys. Res.- Biogeo., 119, 1147–1162,
https://doi.org/10.1002/2013JG002518, 2014.
Zubkova, M., Boschetti, L., Abatzoglou, J. T., and Giglio, L.: Changes in
Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers,
Geophys. Res. Lett., 46, 7643–7653, https://doi.org/10.1029/2019GL083469,
2019.
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
A model consisting of multiple machine learning algorithms is developed to predict wildfire...
Altmetrics
Final-revised paper
Preprint