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Table S1. Studies using statistical methods to estimate burned area 

Region period Method Spatial domain 
Spatial scale 
(estimated; 

km2) 
Temporal scale R2 Reference 

Canada 1959-1997 MLR Ecoregions 
466x466~1123x

1123 
Monthly 36-64% 

Flannigan et al. 
(2005) 

Portugal 1980-2004 MLR 
Portuguese 

districts 
25x25~100x100 Monthly 43-80% 

Carvalho et al. 
(2008) 

Alaska and 
Canada 

1960-2002 MARS Alaska and 
western Canada 

100x100~235x2
35 

Annually 82% Balshi et al. (2009) 

EU-
Mediterranean  MLR 

European 
Mediterranean 

basin 
1400x1400 Monthly 87% 

Camia and Amatulli 
(2009)* 

Western US 1916-2003   MLR 1 Ecoregions 
600x600~1000x

1000 Annually 25-57% Listtell et al. (2009) 

Western US 1980-2004 MLR Ecoregions 
600x600~1000x

1000 
Annually 37-57% 

Spracklen et al. 
(2009) 

Western US 
1972-1988; 
1989-2005  

MLR, RF 2 NUTS34 
600x600~1000x

1000 
Annually 73%; 83% 

Westerling et al. 
(2011) 

EU-
Mediterranean 

1985-2004 MLR Countries 
300x300~1000x

1000 
Monthly 39-69% 

Amatulli et al. 
(2013) 

EU-
Mediterranean 

1985-2004 RF Countries  Monthly 33-72% Amatulli et al. 
(2013) 

EU-
Mediterranean 1985-2004 MARS 3 Countries  Monthly 43-77% 

Amatulli et al. 
(2013) 

Spain 1990-2008 MARS 
Phytoclimatic 

zones 25x25~100x100 Monthly 1-37% Bedia et al. (2013) 

Western US 1916-2004  MLR Ecoregions 
600x600~1000x

1000 
Annually 25-60% Yue et al.  (2013) 

Western US 1916-2004 
Parameteriza

tion 
Ecoregions  Annually 1-69% Yue et al.  (2013) 

North-eastern 
Spain 

1983-2012 MLR Catalonia 300x300 Annually 33% Marcos et al. (2015) 

Iberian 
Peninsula 

1981-2005 MLR Pyro-regions 200x200~700x7
00 

Monthly 52-72% Sousa et al. (2015) 

EU-
Mediterranean 1985-2011 MLR EUMED 5 2000x2000 Annually 60% Urbieta et al. (2015) 

Pacific western 
coast of USA 

1985-2011 MLR 
Oregon and 
California 

1000x1000 Annually 37% Urbieta et al. (2015) 

British 
Columbia, 
Canada 

1961-2010 MLR 
Southern 
Cordillera 

1400x1400 Annually 55% 
Kirchmeier-Young 
et al. (2018) 
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Catalonia, 
Iberian 
Peninsula 

1982-2015 MLR 
Fire regime 

zones 
80x80~150x150 Annually 57-91% Duane et al. (2019) 

South-Central 
US 

2002-2015 

Integration of 
RF, logistic 

regression, and 
QRF 

Eastern Texas, 
Oklahoma, 

Louisiana, and 
Arkansas 

700x700 Monthly 
50% (winter-
spring); 79% 
(summer) 

This study 

 
1 MLR: Multiple Linear Regression; 2 RF: Random forest; 3 MARS: Multivariate adaptive regression Splines; 4 NUTS3: 5 

Nomenclature of Territorial Units at the third level 5 EUMED: burned area summation over Portugal, Spain, South France, 

Italy and Greece 

*: focus on only large fires 
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Table S2. Comparison of MAE and skewness between the RF model and the developed model 

Metrics 
Model developed in this 

study 

MLR 
RF alone XGboost 

MAE (winter-spring) 1.13 1.44 1.34 1.26 

Skewness (winter-

spring) § 
0.70 (percentiles) 

37.40 (burned area) 
37.40 (burned area) 37.40 (burned area) 

  

MAE (summer) 0.57 0.76 0.70 0.67 

Skewness (summer) § 0.96 (percentiles) 33.83 (burned area) 33.83 (burned area) 33.83 (burned area) 

 

§: Skewness: The calculation of the skewness is described below in the section of calculation of skewness. 

 

Table S3. The selected XGboost hyperparameters for the winter-spring and summer fire seasons 15 

 eta Max_depth gamma subsample Colsample_bytree Min_child_weight 

Winter-

spring 

0.01 10 3 0.75 0.7 1 

Summer 0.05 8 3 1 0.6 1 
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Table S4. Model performance at grid level for the selected years 

 

 

Table S5. Model performance at grid level for each year 

 Year 

Statistics 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Winter-spring (excluding misclassified grids) 

R2 0.70 0.76 0.77 0.64 0.38 0.52 0.51 0.38 0.54 0.36 0.56 0.55 0.41 0.61 

MAE 

(km2) 

0.20 0.46 0.34 0.34 5.63 0.37 2.10 3.12 0.38 3.17 0.32 0.27 0.83 0.34 

RMSE 

(km2) 

2.02 2.30 1.50 1.91 14.61 1.64 11.18 14.21 1.81 23.34 2.48 0.91 6.04 1.92 

Summer (excluding misclassified grids) 

R2 0.40 0.46 0.60 0.62 0.59 0.31 0.59 0.43 0.47 0.40 0.49 0.56 0.37 0.41 

MAE 

(km2) 

0.08 0.17 0.09 0.52 0.93 0.02 0.42 0.58 0.33 3.71 1.20 0.32 0.15 0.68 

RMSE 

(km2) 

0.32 1.88 0.92 2.08 2.48 0.09 1.42 6.37 0.95 12.08 9.23 1.81 1.66 4.35 

Winter-spring (including misclassified grids) 

R2 0.40 0.52 0.49 0.39 0.35 0.27 0.28 0.29 0.31 0.23 0.35 0.28 0.30 0.40 

MAE 

(km2) 

0.18 0.35 0.26 0.31 4.84 0.33 1.92 2.83 0.311 2.78 0.25 0.24 1.05 0.35 

RMSE 

(km2) 

1.70 1.95 1.23 1.78 13.42 1.59 10.26 13.24 1.55 21.12 2.10 0.81 5.19 3.21 

Summer (including misclassified grids) 

R2 0.28 0.10 0.28 0.33 0.45 0.10 0.42 0.29 0.31 0.39 0.32 0.40 0.20 0.26 

Year/Fire season 
Including misclassified grids Excluding misclassified grids 

R2 RMSE (km2) MAE (km2) R2 RMSE (km2) MAE (km2) 

2011 (combine winter-

spring and summer) 

0.30 11.04 3.38 0.42 21.06 5.25 

2014 (winter-spring) 0.30 5.19 1.05 0.51 5.87 0.77 

2008 (summer) 0.42 1.58 0.38 0.66 1.75 0.43 
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MAE 

(km2) 

0.09 0.18 0.11 0.42 0.76 0.05 0.38 0.48 0.31 3.09 1.08 0.27 0.19 0.57 

RMSE 

(km2) 

0.67 1.75 0.95 1.79 2.20 0.25 1.58 5.50 0.96 10.85 8.35 1.63 2.06 3.85 

 25 

 

Table S6. The ratio of %IncMSE at variable ranked as X percentile (Yth) to the %IncMSE at variable ranked as (Y+1)th for 

the three selected percentiles 

 25th percentile (Y=14) 50th percentile (Y=29) 75th percentile (Y=43) 

Spring-winter  1.21 0.88 1.00 

Summer  1.06 1.01 1.00 

 

Table S7. Comparison of accuracy, AUC, F-1 score, MAE, RMSE, and MAE of large burned area between the model with 30 

the chosen set of predictors and the model with the predictors that have lower degrees of collinearity (r < |0.5|) 

Model Model with the chosen set of 

variables 

Model with variables that 

have lower degrees of 

collinearity 

Winter-Spring   

Number of predictor variables 58 33 

Accuracy (winter-spring) 0.74 0.71 

AUC (winter-spring) 0.82 0.78 

F-1 (winter-spring) 0.79 0.77 

MAE (log(area); winter-spring) 1.37 1.43 

RMSE (log(area); winter-spring) 2.03 2.06 

MAE of large burned area† (log(area); winter-spring) 2.32 2.57 

Summer 

Number of predictor variables 57 31 

Accuracy (summer) 0.74 0.72 

AUC (summer) 0.83 0.80 

F-1 (summer) 0.77 0.75 

MAE (log(area); summer) 1.17 1.20 

RMSE (log(area); summer) 1.87 1.88 
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MAE of large burned area† (log(area); summer) 2.25 2.31 
† Large burned area here is defined as the burned area larger than 90th percentile. 

 

 

 35 

Table S8. Mean scaled absolute percentage effects by control factor group for the two fire seasons calculated by decompose 

analysis at the large-scale domain. 

 Weather effect Fuel effect Climate 

effect  

Fix effect Interaction 

effect 

Spring-winter  12.57 21.39 33.23 22.93 10.87 

Summer  16.26 17.29 35.79 21.8 8.87 

 

 

Table S9. The mean variable importance metrics (%IncMSE) of each effect for the two fire seasons calculated based on grid 40 

burned area prediction 

 Weather effect Fuel effect Climate effect  Fix effect 

Spring-winter  8.20 9.04 12.09 6.56 

Summer  9.12 4.85 19.18 4.59 

 

 

Table S10. Comparison of MAE, MAE of large burned area, and standard deviation of predictions between the model with 

the chosen percentiles, percentile test set 1, and percentile test set 2. 45 

Model 
With the chosen 

percentiles* 
Percentile test set 1* Percentile test set 2* 

MAE (log(area); winter-spring) 1.37 1.30 1.29 

MAE of large burned area† 

(log(area); winter-spring) 
1.97 2.64 2.81 

Standard deviation of 

predictions (log(area); winter-

spring) 

2.42 2.09 2.09 

    

MAE (log(area); summer) 1.17 1.12 1.11 
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MAE of large burned area† 

(log(area); summer) 
2.25 2.42 2.52 

Standard deviation of 

predictions (log(area); summer) 
2.19 1.93 1.92 

 
* Model developed in this study: Use the selected percentiles of 45, 55, 65, 85, 95, and 99 and six subgroups of (39, 49), (50, 59), (60, 69), 

(70, 79), (80, 89), (>=90). 

* Set 1: Use the selected percentiles of 45, 55, 65, 75, 85, and 95 and six subgroups of (39, 49), (50, 59), (60, 69), (70, 79), (80, 89), 

(>=90). 50 
* Set 2: Use the selected percentiles of 47.5, 63, 78, and 93 and four subgroups of (39, 55), (56, 70), (71, 85), (86, 100). 
† Large burned area here is defined as the burned area larger than 90th percentile. 

 

 
Figure S1. Seasonal burned area for the South Central US. It shows the monthly total burned area summed over 2002-2015. 55 
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Figure S2. (a) Histogram of burned area of all the grids and (b) histogram of the percentile groups of burned area for the 

winter-spring fire season. 

 60 
Figure S3. Probability distribution of burned area for 10 folds of the training set (black line), testing set predicted to have 

percentiles less than 70 (blue), between 70 and 79 (yellow), between 80 and 89 (green), and equal to or larger than 90 (purple). 
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Figure S4. The ROC curve analysis of the logistic model for predicting burned grids in (a) winter-spring and (b) summer fire 65 

season. 

 

 

 

 70 

 
 

Figure S5. Maps of temporal correlation between observed and predicted burned area for each grid for the (a) winter-spring 

fire season (b) summer fire season. 
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 75 

 
Figure. S6. Box plots of MAE from 10-fold-cross validation and different methods for (a) winter-spring and (b) summer fire 

season. 

 

 80 

 
Figure S7. Box plots of variable importance in %IncMSE from the 50 times 10-fold cross validation for (a) winter-spring and 

(b) summer fire season. 
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 85 
Figure S8. Scatter plot of RH anomaly versus temperature anomaly for (a) winter-spring and (b) summer fire season. The 

color represents different sizes of fire burned area (Green: smaller than 50th percentile; Red: larger than 50th percentile but 

smaller than 75th percentile; Black: larger than 75th percentile). 

 

 90 
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Figure S9. Partial dependence plots for the burned area model and (a) RH anomaly, (b) the mean SPEI of the preceding 4 

months, (c) the average precipitation of 1979-2000, (d) the standard deviation of temperature of 1979-2000 for the winter-

spring fire season. The blue line is the LOESS smooth line. 95 
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Figure S10. Partial dependence plots for the burned area model and (a) RH anomaly, (b) long-term (1979-2000) standard 

deviation of temperature, (c) minimum RH anomaly, and (d) the mean SPEI of the preceding 2 months for the summer season. 

The blue line is the LOESS smooth line. The blue line is the LOESS smooth line. 100 
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Figure S11. The correlation plot of the top 14 variables for the (a) winter-spring and (b) summer fire season. 

 

 105 
Figure S12. Distributions of VIF calculated based on randomly selected seven variables of 5000 times sampling for winter-

spring (top) and summer fire season (bottom). 
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Figure S13. Timeseries of burned area contributed by different environmental controls for the (a) winter-spring and (b) 110 

summer fire season. Color of blue, green, yellow, red, and purple indicate effect of weather, fuel, climate, fix, and interaction. 

 

 

 

 115 
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Figure S14. Timeseries of the percentage for the (a) winter-spring fire season and (b) summer fire season. Color of blue, green, 

yellow, red, and purple indicate effect of weather, fuel, climate, fix, and interaction. The percentage was calculated by dividing 

the total burned area of the month. 120 
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 125 
Figure S15. Timeseries of the scaled absolute percentage for the (a) winter-spring fire season and (b) summer fire season. 

Color of blue, green, yellow, red, and purple indicate effect of weather, fuel, climate, fix, and interaction. 
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Figure S16. Timeseries of observed (black line) and predicted total burned area (red line) for the selected grid (Lon: -98.75, 130 

Lat: 29.25) for the winter-spring fire season. 

 

 
Figure S17. Distribution of burned area of all the grids for the study period excluding 2011 (black line) and of the grids for 

the extreme year 2011 (red line) combined both seasons. 135 

 

 

 

XGBoost Model 
 XGBoost (eXtreme Gradient Boosting) is based on Gradient Boosting Decision Tree (GBDT) method, which is an 140 

iterative decision tree algorithm. GBDT iterates multiple trees to make final decisions. Compared to GBDT, XGBoost uses a 

more regularized model formalization to control over-fitting and parallelizes the tree formation to enhance the computational 

power (Chen and Guestrin, 2016). The hyperparameters of XGboost were tuned by a grid search with 10-fold cross-validation 
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to find the best model based on MAE. Table S3 shows the optimum value of each hyperparameter for the winter-spring and 

summer fire season model. 145 

 

Calculation of skewness 
Skewness is a measure of the asymmetry of the probability distribution of a random variable about its mean. The 

skewness of a random variable X is the third standardized moment 𝜇"#, defined as: 

 𝜇"# = 𝐸 &'()*
+
,
"
- = *.

+.
= /[(()*).]

(/[(()*)4])./4
= 6.

64
./4             (1) 150 

where µ is the mean, s is the standard deviation, E is the expectation operator, µ3 is the third central moment, and kt are the 

t-th cumulants. If skewness is less than -1 or greater than +1, the distribution is highly skewed. If skewness is between -1 and 

-0.5 or between +0.5 and +1, the distribution is moderately skewed. If skewness is between -0.5 and 0.5, the distribution is 

approximately symmetric. The positive value indicates that the tail is on the right side of the distribution while negative 

value indicates that the tail is on the left. 155 

 

Calculation of correlation coefficient (r) 
We also calculated two types of correlation coefficient (r) to evaluate model performance: spatial r and temporal r. 

For the spatial r, for each month, we calculated the correlation coefficient of the prediction and observation for all the grids 

over the whole domain. As for the temporal r, for each grid, we calculated the correlation coefficient for the timeseries of 160 

observed and predicted burned area. At the end, we obtain a map showing the temporal R, demonstrated in Figure S5. 

 

Method to decompose the relative influence of environmental controls 
 A set of sensitivity experiments was designed to decompose the effect of different environmental controls across our 

study domain by perturbing variables belonging to one category at a time. The environmental control categories to be perturbed 165 

include weather, climate, and fuel. The fix-geospatial factors remain unchanged in each sensitivity experiment. The variables 

of each category are listed in Table 1. First, to examine the influence of weather, for each grid, we assigned the values of 

individual weather variables to their 15-year means by grids while keeping the variation of other variables (hereafter refer to 

as the “weather-avg run”). The same procedure was applied to the variables in the climate and fuel category, resulting in the 

climate-avg run and fuel-avg run respectively. The original model with all the variables of each grid varying by time is called 170 

the full-model run. Second, the gridded burned area predicted from each run is summed over all the grids across the study 

domain. The differences in resulting total burned area between the full-model run and weather-avg run represent the impact of 

weather control (hereafter called “weather effect”), and the same procedure was applied to derive the climate effect and fuel 

effect on the burned area. We also conducted the fixed run, in which for each grid, its weather, climate anomaly, and fuel 

variables are all fixed to their long-term mean, and the predicted burned area from this run represents the influence of geospatial 175 
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variables and climate normals on the burned area (hereafter named “fix effect”). Although the calculations of deriving the 

effect of a given environmental category are made by assuming linearity, the machine-learning-based prediction model does 

not assume linearity. Thus, the summation of burned area prediction from the weather, climate, fuel, and fixed run is not 

necessarily equal to the burned area predicted by the full model. This difference is considered as the interaction effect among 

these environmental controls. 180 

 After deriving the effects of the environmental controls on the burned area, we then calculated such effects of 

environmental controls in the scaled absolute percentage. The effect of an environmental control category was normalized by 

the number of variables in that category because the numbers of variables are different by environmental control and the 

category with a larger number of variables may have a larger effect on the burned area. Then, the scaled absolute percentage 

is defined as the normalized absolute value of the effect of one environmental control divided by the summation of the 185 

normalized absolute values of all the effects over all the categories. Thus, the scaled absolute percentage represents the average 

effect of a single variable in each category. For example, Equation (1) shows how we calculated the scaled absolute percentage 

of the weather contribution on burned area: 
|	/9|

:9;

|	/9|
:9; <

|	/=>|
:=>? <|	/@| :A; <

|	/=B|
:=B? <|	/B| :C;

 ,                 (2) 

 190 

, where E is the influence of the environmental controls in burned area, N indicates the number of variables in the category, Nt 

is the total number of variables, and the subscript w, fu, c, fi, and, i represent weather, fuel, climate, fixed, and interaction, 

respectively.  
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