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Abstract. Occurrences of devastating wildfires have been in-
creasing in the United States for the past decades. While
some environmental controls, including weather, climate,
and fuels, are known to play important roles in controlling
wildfires, the interrelationships between these factors and
wildfires are highly complex and may not be well repre-
sented by traditional parametric regressions. Here we de-
velop a model consisting of multiple machine learning algo-
rithms to predict 0.5◦×0.5◦ gridded monthly wildfire burned
area over the south central United States during 2002–2015
and then use this model to identify the relative importance
of the environmental drivers on the burned area for both
the winter–spring and summer fire seasons of that region.
The developed model alleviates the issue of unevenly dis-
tributed burned-area data, predicts burned grids with area
under the curve (AUC) of 0.82 and 0.83 for the two sea-
sons, and achieves temporal correlations larger than 0.5 for
more than 70 % of the grids and spatial correlations larger
than 0.5 (p<0.01) for more than 60 % of the months. For the
total burned area over the study domain, the model can ex-
plain 50 % and 79 % of the observed interannual variability
for the winter–spring and summer fire season, respectively.
Variable importance measures indicate that relative humid-
ity (RH) anomalies and preceding months’ drought severity
are the two most important predictor variables controlling the
spatial and temporal variation in gridded burned area for both
fire seasons. The model represents the effect of climate vari-
ability by climate-anomaly variables, and these variables are
found to contribute the most to the magnitude of the total

burned area across the whole domain for both fire seasons. In
addition, antecedent fuel amounts and conditions are found
to outweigh the weather effects on the amount of total burned
area in the winter–spring fire season, while fire weather is
more important for the summer fire season likely due to rel-
atively sufficient vegetation in this season.

1 Introduction

Wildfire is an important process maintaining the balance
of terrestrial ecosystems. Wildfire occurrence is controlled
by a complex interaction among fuel, weather, and climate
(Bowman et al., 2009; Pausas and Keeley, 2009). In recent
decades, many regions of the world have experienced an in-
crease in frequency and intensity of wildfires, which may
be possibly connected to changes in regional climate (Bal-
shi et al., 2009; Barbero et al., 2015; Carvalho et al., 2008;
Flannigan et al., 2009; Westerling et al., 2006; Westerling,
2016). More intense and more frequent wildfire activities not
only heighten ecosystem vulnerability but also cause poor
air quality (Jaffe et al., 2008; Pellegrini et al., 2017; Wang
et al., 2018; Yue et al., 2015). Thus, it is imperative to un-
derstand how wildfires would respond to changes in environ-
mental factors in a warming climate.

Previous studies revealed the importance of several envi-
ronmental factors for wildfires. Fuel availability and compo-
sition across regions can affect fire developments such as fire
likelihood and spread efficiency (Nunes et al., 2005; Parks

Published by Copernicus Publications on behalf of the European Geosciences Union.



11066 S.-C. Wang and Y. Wang: Quantifying the effects of environmental factors

et al., 2012). Weather influences fuel moisture by chang-
ing precipitation and humidity, and they control fire spread
through winds. Long-term climate change can alter both fuel
and weather conditions, for example by adjusting vegetation
distributions and the frequency of fire-favorable atmospheric
conditions (Heyerdahl et al., 2008; Keyser and Westerling,
2017; Morgan et al., 2008; Zubkova et al., 2019), therefore
changing fire regimes. Past studies also highlighted that the
complex interplay between fuel, weather, climate, and wild-
fires can vary depending on spatial scale, fire size, region, and
season. For instance, the relationships between fire activity
and the environmental controls can exhibit complex nonlin-
earities across the spatial scale gradient (Peters et al., 2004).
Fuel and topography mainly regulate fires at a local scale,
while weather and climate control fires at a broad spatial
scale (Parks et al., 2012). In terms of fire size, it was found
that the major controlling factors could shift from fuel and
topography to weather as fire size increases in boreal forests
(Liu et al., 2013; Fang et al., 2015). In the western Mediter-
ranean Basin, where land heterogeneity is large, influences
of fuel can outweigh influences of climate and weather on
large fires (Fernandes et al., 2016). Therefore, it is challeng-
ing to examine the relative importance of the environmen-
tal drivers on wildfires due to the complex interrelationships
among them.

One common method to explain the relationships between
fire regimes (e.g., fire sizes or fire occurrences) and envi-
ronmental factors is regression. This method is also used to
evaluate the relative importance of different environmental
controls (Littell et al., 2009; Slocum et al., 2010; Parisien et
al., 2011; Yue et al., 2013; Liu and Wimberly, 2015; Fer-
nandes et al., 2016). Among a wide range of regression
techniques used, nonparametric machine learning algorithms
have emerged as an important tool to predict wildfires be-
cause they rely on fewer pre-assumptions about the data. Be-
dia et al. (2014) used nonparametric multivariate adaptive
regression splines (MARSs) to model the monthly burned
area for the phytoclimatic zones in Spain of sizes rang-
ing from 25 km× 25 km to 100 km× 100 km. Amatulli et
al. (2013) used two machine learning approaches – random
forest (RF) and MARS – to estimate monthly burned area
in five countries in Europe with a spatial resolution ranging
from 300 km× 300 km to 1000 km× 1000 km. In these stud-
ies, the machine learning methods were used to estimate to-
tal burned area aggregated over a large-scale domain, e.g.,
on an ecoregion or a country scale (Table S1 in the Sup-
plement). However, fewer studies have explored the utility
of machine learning methods in resolving the within-domain
and grid-level relationships between fires and the environ-
mental drivers. A particular challenge in predicting burned
area of fires at the grid level across a broad region relates
to the uneven distribution of burned area both spatially and
temporally, where the number of grids of large burned area
is much smaller than the number of those with small or zero
burned areas. For example, Steel et al. (2015) showed that

Figure 1. The colored grid boxes show the averaged burned area for
the winter–spring and summer fire seasons during 2002–2015 from
Fire Program Analysis Fire-Occurrence Database (FPA-FOD). The
red box denotes the south central US domain.

for fires in California, small fires (<25 ha each) contributed
to 87 % of the total number of grids burned but only 17 % of
the total burned area, whereas large fires (>150 ha each) ac-
counted for only 3 % of the total number of burned grids but
made up 64 % of the total burned area. Thus, at the grid level
the majority class is non-burn wildlands or small fires, while
the minority class is large fires. As most data-driven regres-
sion algorithms, parametric or nonparametric, would favor
the majority class, large fires will be underpredicted for grid-
level predictions.

In this study, we develop a model consisting of multiple
machine learning techniques to predict wildfire burned area
at the grid level over the vegetation-rich and thus fire-prone
region of the south central United States (US), which en-
compasses four states – Texas, Oklahoma, Louisiana, and
Arkansas – as shown in Fig. 1. The study region is chosen
for several reasons. First, this region is composed of similar
vegetation types, which are plains and oak–hickory forests.
Second, the vegetation-rich region of the south central US is
fire-prone and has experienced periodically large wildfires in
recent years, such as the 2011 Texas fires (Long et al., 2013;
Nielsen-Gammon, 2012), but the region as a whole has been
much less studied compared to the western US. Third, this
region is projected to have the highest risk of wildfires in
2031–2050 across the continental US (An et al., 2015; Fann
et al., 2018). In terms of the prediction method, the integrated
machine learning model aims at mitigating the problem of
the uneven distribution of burned-area data and improving
the accuracy of predicting wildfire burned area at a grid scale
of 0.5◦× 0.5◦. Using the prediction model developed here,
the goal of this paper is to estimate the relative importance of
different environmental factors on wildfire burned area in the
study region, which would be useful for future fire predic-
tion as well as understanding the linkage between wildfires
and climate change.
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The study period is from 2002 to 2015. For each year, we
predict gridded wildfire burned area at the monthly scale for
the typical bimodal wildfire seasons over the region (Fig. S1
in the Supplement): the winter–spring fire season from Jan-
uary to April and summer fire season from July to September
(Zhang et al., 2014). Wildfires during the winter–spring wild-
fire season are typically associated with dry and strong winds
resulting from large-scale low-pressure systems (Heilman et
al., 1998; Jones et al., 2013), while wildfires in the summer
are mostly driven by the abundance of dry or dead vegetation
produced from the dry season (Jones et al., 2013). These two
seasons contribute 76 % of the annual total burned area, indi-
cating that natural environmental conditions in these months
are most conducive for wildfires. While wildfires do occur
outside the fire seasons, their lower frequency implies that
nonnatural factors (e.g., human actions) can be relatively
more important. As our study does not focus on human fac-
tors, we choose to exclude other months of the year.

The rest of the paper is organized as follows: Sect. 2 in-
troduces data incorporated into the model. Section 3 de-
scribes the developed model and validation method. Sec-
tion 4 presents the results of model validation and evaluation.
In Sect. 5, we analyze the relative importance of individual
variables and the environmental controls at different spatial
scales. Discussion and conclusion are given in Sect. 6.

2 Data

2.1 Wildfire burned area

The model predicts wildfire burned area at a grid scale of
0.5◦×0.5◦ over the study region. Wildfire burned area is cho-
sen as the target variable because it is a widely used parame-
ter for quantitative assessment of fire danger and fire impact
(Amatulli et al., 2013; Balshi et al., 2009; Yue et al., 2013).
Wildfire information over the study period (2002–2015) is
obtained from the Fire Program Analysis Fire-Occurrence
Database (FPA-FOD). The FPA-FOD collects daily wildfire
reports from federal, state, tribal, and local governments. The
dataset includes wildfire burned area, fire location in longi-
tude and latitude, and fire discovery date from 1992 to 2015
(Short, 2017). The FPA-FOD fire data exclude prescribed
fires except for the prescribed fires that escape their planned
perimeters and become wildfires. A known caveat of this
database is that it does not include some small fires that oc-
cur on private lands. Short (2014) reported that for the period
of 1992–1997 the national total number of wildfires from the
FPA-FOD is about 30 % lower compared to that from the US
Department of Agriculture Forest Service (USFS) Wildfire
Statistics, although the national total burned area is consis-
tent between the two datasets. Thus, our model will not be
able to predict those small fires missing from the FPA-FOD
as such information is not in the training dataset.

The FPA-FOD wildfire data are point data at a daily time
step. As the prediction model deals with the monthly total
burned area at a spatial resolution of 0.5◦× 0.5◦, we aggre-
gate the daily point burned area into 0.5◦× 0.5◦ grid cells
based on fire longitude and latitude and sum the burned area
in each grid by month. The resulting dataset of monthly
burned area has nearly 70 % of the grids with a burned area
of less than 10 ha or non-burned. To reduce skewness and im-
prove data symmetry, we apply the log transformation func-
tion ln(x+ 1), where x is the gridded monthly total burned
area. The log-transformed burned area is the target variable
of the model.

2.2 Predictor variables

Based on previously published studies, we collect a number
of predictor variables that are thought to influence wildfire
burned area (Fang et al., 2015; Keyser and Westerling, 2017;
Liu and Wimberly, 2015; Riley et al., 2013; Yue et al., 2013)
and group them into four categories of environmental con-
trols (Table 1): weather, climate, fuel, and fixed geospatial
variables. These predictor variables are listed in Table 1 and
described below. All the variables, including continuous and
discrete thematic variables, are resampled to a spatial res-
olution of 0.5◦× 0.5◦ by the nearest-neighbor resampling
method (Baboo and Devi, 2010). The nearest-neighbor re-
sampling method assigns a value to the new grid according
to the value of the original grid closest to the center of the
new grid. The resampling method has the advantages of be-
ing efficient and not changing any value from the original
dataset.

2.2.1 Weather variables

The meteorological data are obtained from the North Amer-
ican Regional Reanalysis (NARR) with a spatial resolution
of 32 km× 32 km (Mesinger et al., 2006). The weather vari-
ables include the monthly total accumulated precipitation
and the monthly means of the following variables: daily pre-
cipitation, daily average and maximum temperature, zonal
(U ) and meridional (V ) components of wind at 10 m, and
daily average and minimum relative humidity (RH). In order
to select extreme conditions that are likely to induce wildfires
on a sub-monthly timescale, we also include the number of
consecutive days without rainfall within a month, which is
based on daily precipitation from the NARR data. Another
extreme weather pattern conducive for wildfires is drought
(Gudmundsson et al., 2014; Riley et al., 2013; Turco et al.,
2017). Drought depicts the extreme condition of water deficit
in the coupled land–atmosphere system that can be driven
not only by lack of precipitation but also by excessive evap-
oration. We use the Standard Precipitation and Evaporation
Index (SPEI) to represent drought intensity (Vicente-Serrano
et al., 2009). The SPEI incorporates both precipitation and
potential evapotranspiration to estimate climatic water bal-
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ance at different timescales (1 to 48 months). In this study,
we use the 1-month SPEI from the global SPEI database
(http://spei.csic.es/database.html, last access: 25 July 2017)
with a spatial resolution of 0.5◦× 0.5◦. Positive values of
SPEI represent wetter than normal conditions and negative
values indicate conditions that are drier than normal.

Weather conditions in the preceding months are also
known to influence fire development. For example, an in-
crease in precipitation in the preceding months can promote
biomass growth and provide fuels for a widespread of larger
wildfires in a later month (Fréjaville and Curt, 2017; Littell et
al., 2009). To consider such lagged effects, for a given month
t , we calculate the averages of the aforementioned weather
variables from the months t − 1 to t − 12. We then include
those lagged variables that have correlation coefficients (r)
larger than 0.5 with wildfire burned area of month t but are
not strongly correlated with the same variables of month t
(r<0.5). For the winter–spring fire season, the antecedent
variables that pass this criterion are the monthly mean of
daily precipitation of months t − 1 and the average SPEI of
the months t − 1, t − 1 to t − 2, t − 1 to t − 3, t − 1 to t − 4,
t − 1 to t − 5, and t − 1 to t − 6. For the summer fire season,
the selected antecedent variables are the average of monthly
mean temperature for months t−1 and t−1 to t−2, monthly
mean of daily precipitation for months t−1, t−1 to t−2 and
t − 1 to t − 3, and mean SPEI of months t − 1, t − 1 to t − 2,
and t − 1 to t − 3.

2.2.2 Climate variables

Inputs of climate variables to the model include both cli-
mate anomalies and 22-year (1979–2000) means and stan-
dard deviations of selected meteorological variables from the
NARR data. Here climate anomalies refer to the departure
of monthly mean meteorological variables from their long-
term averages over 1979–2000, thereby representing the ef-
fects of climate on meteorological conditions. The climate
anomalies are calculated for the monthly total precipitation
and monthly means of daily average precipitation, daily av-
erage and maximum temperature, and average and minimum
RH. The long-term average and standard deviation of me-
teorological variables characterize the spatial and temporal
patterns of the mean climate conditions, which can determine
the typical vegetation of the study region and hence influence
fire occurrence and size (Keyser and Westerling, 2017). We
use the 22-year means and standard deviations of monthly
total accumulated precipitation and monthly means of daily
average and maximum temperature, and daily average pre-
cipitation. As climatological means and standard deviations
do not vary with time, they are grouped with the geospatial
variables later in the study as the category of fixed variables.

2.2.3 Fuel variables

Fuel variables are selected to estimate the fuel effect on
burned area and these variables include monthly mean of leaf
area index (LAI), sum of neighboring LAI, and soil mois-
ture. The LAI is the ratio of the total one-sided area of green
leaf area per unit ground surface area, which has been widely
used to describe the structural property of a plant canopy
(Watson, 1947; Chen and Black, 1992). Additionally, LAI is
correlated with important metrics of canopy fuel loads, such
as canopy bulk density (Keane et al., 2005; Steele-Feldman
et al., 2006). The monthly mean LAI at a spatial resolution of
500 m is obtained from MODerate resolution Imaging Spec-
troradiometer (MODIS) instruments (Myneni et al., 2015).
Besides local LAI values, to capture the effects of spatial au-
tocorrelations, we consider each grid cell as the center of a
three-by-three grid matrix and compute the summation of the
LAI from the center grid’s eight neighboring grids. This sum-
mation is referred to as the “sum of neighboring LAI” and
included as a predictor variable. The lagged effects of fuel
buildup in the preceding months are expected to influence
wildfire occurrence and size. Using the same criteria to se-
lect antecedent weather variables (Sect. 2.2.1), the averages
of LAI and sum of neighboring LAI for the months t − 1 to
t−6 are selected as antecedent fuel variables for the winter–
spring fire season, but no such variables are included for the
summer fire season because none passes the selection crite-
ria.

Fuel moisture is a critical property for evaluating fire dan-
ger. As fuel moisture data are limited, soil moisture is often
used as an indicator of fuel moisture because of the strong
correlation between the two (Krueger et al., 2016). Here, we
use the monthly surface soil moisture (0–10 cm) from the
Noah land–surface model for Phase 2 of the North Ameri-
can Land Data Assimilation System (NLDAS-2) with a spa-
tial resolution of 0.125◦× 0.125◦ to represent the influence
of fuel moisture (Xia et al., 2012; Mocko, 2013).

2.2.4 Geospatial variables and population

Lastly, population and two geospatial variables are used
as predictors, including ecoregions and land cover types
which are chosen to capture the effects of land use and
ecosystem similarity on wildfire burned area. Land cover
mainly describes the physical material at the surface of
the earth. The land cover data at the spatial resolution
of 30 m are obtained from the 2011 Landsat-derived land
cover map from the National Land Cover Database (NLCD)
(https://www.mrlc.gov, last access: 20 April 2018) (Homer
et al., 2020). The ecoregion data are obtained from the
United States Environmental Protection Agency (U.S. EPA)
(https://www.epa.gov/eco-research/ecoregions, last access:
20 April 2018) (Omernik, 1995; Omernik and Griffith,
2014). The ecoregions denote areas of similarity in the
mosaic of biotic, abiotic, terrestrial, and aquatic ecosys-
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tem components. Population density data in the year 2010
from the U.S. Census Bureau (https://www.census.gov/geo/
maps-data/data/tiger.html, last access: 1 September 2018)
(U.S. Census Bureau, 2010) are used to estimate the influ-
ence of present-day human management practices and hu-
man activities on wildfires.

3 Model

3.1 Model description

One major challenge in wildfire prediction is the highly un-
even distribution of burned area where the number of grids
with large burned areas is typically much smaller than the
number of grids with small or zero burned areas (Fig. S2a).
For the study region (red box in Fig. 1), grids without any
fire occurrence in combination with those of only small fires
(<25 ha) take up 79 % of the total number of the grids but
correspond to only 1 % of the total burned area. By contrast,
grids with the large burned area (>150 ha) account for 84 %
of the total burned area but only 6 % of the total number of
grids. For such unevenly distributed data, standard machine
learning methods usually favor the majority class (i.e., non-
burned or small fires), leading to the low prediction accuracy
of the minority class (i.e., large fires) (Krawczyk, 2016). To
alleviate the low bias toward large fires, we develop a model
consisting of multiple steps that address the uneven data is-
sue.

Figure 2 demonstrates the structures and processes of our
model, which has four steps and uses three machine learn-
ing algorithms. First, for each data grid, given the predictor
variables, we use the quantile regression forest (QRF) to pre-
dict a distribution of burned area at the targeted percentiles,
which are chosen at 45, 55, 65, 85, 95, and 99 in this step.
The percentiles here refer to the relative position of the pre-
dicted burned area in the cumulative distribution of all the
burned-area data and they are chosen to include the whole
conditional distribution. Second, for all the grids, we predict
if a grid burns or not by using the logistic regression model
and the same set of predictor variables as in the first step.
Third, for the grids that are predicted to burn, instead of pre-
dicting burned area directly, we use an RF model to predict
the percentile of burned area relative to the training set. After
all the predicted-burn grids obtain their predicted percentiles
of burned area by the RF, the test dataset is divided into six
subgroups according to their predicted percentiles: {(39,49),
(50,59), (60,69), (70,79), (80, 89), (>= 90)}. The percentile
groups are chosen to align with the six percentiles in the first
step. The first three percentiles correspond to the median of
the first three percentile groups. For example, the first per-
centile group (39, 49) has a median percentile of 45, the
first percentile of predicted wildfire burned area from the first
step. The last three percentiles (85, 95, and 99) from the first
step correspond to the last three percentile groups of (70, 79),

(80, 89), and (>= 90), respectively, although they lie outside
the upper bounds of corresponding subgroups. This is based
on the assumption that grids with the larger predicted burned
area (predicted percentile >70) in the testing set will have
more right-shifted burned-area distributions than the distri-
butions of the whole training set, as shown in Fig. S3. In
step 4, for the grids in a given subgroup, they are assigned
to the burned-area value at the corresponding percentiles as
determined by the predicted distribution generated from the
first step. Specifics of the machine learning algorithms and
technical details of the prediction model are described in the
subsections below.

Our approach alleviates the issue of unevenness data for
two reasons. First, the majority of zero-burn grids are sepa-
rated by the second step. Second, for the grids predicted to
burn, we predict the relative position (i.e., percentiles) of the
burned area based on the training set. As Fig. S2 and Ta-
ble S2 show, the distribution of percentiles is less skewed
compared to the burned-area distribution. Thus, the uneven-
ness of the burned area is less severe when predicting the
percentiles than predicting the burned area directly. Given
the possible collinearity between the predictor variables, we
choose the logistic model and RF model, which are shown to
work reasonably well under moderate collinearity (correla-
tion coefficient <|0.7|) (Dormann et al., 2013). We verify
that the correlation between any pairs of the time-varying
predictor variables is less than 0.7, except for the variables of
the antecedent SPEI. We choose to keep the antecedent SPEI
covering the different ranges of months to represent the dif-
ferent pre-fire drought conditions which are expected to play
an important role for wildfires. For the winter–spring fire sea-
son, the pre-fire season starts in October and can range from
3 to 6 months for the start (January) and end (April) of the
fire season, respectively. For the summer fire season, we use
May as the start month of the pre-fire season and the pre-fire
season ranges from 1 to 4 months for the start (July) and the
end (September) of the summer fire season, respectively.

3.1.1 Random-forest regression

RF is an ensemble-learning algorithm built on decision trees.
Each tree is built using the best split for each node among a
subset of predictors randomly selected at the node (Liaw and
Wiener, 2002). The best split criterion is based on selecting
the variables at the nodes with the lowest Gini Index (GI),
which is defined as GI (tx (xi))= 1−

∑m
j=1f (tx (xi) ,j)

2,
where f (tx (xi) ,j) is the proportion of samples with the
value xi belonging to leaf j as node t . Two parameters can
be adjusted to optimize the RF model, including the number
of trees grown (ntree) and the number of predictors sampled
for splitting at each node (mtry). The RF regression model
first draws ntree bootstrap samples from the original dataset.
For each sample, at each node of a tree, mtry predictors are
randomly chosen from all the predictors and then the best
split from among the predictors is determined at each node

Atmos. Chem. Phys., 20, 11065–11087, 2020 https://doi.org/10.5194/acp-20-11065-2020

https://www.census.gov/geo/maps-data/data/tiger.html
https://www.census.gov/geo/maps-data/data/tiger.html


S.-C. Wang and Y. Wang: Quantifying the effects of environmental factors 11073

Figure 2. Illustration of the steps in the developed model. The model includes four steps and three machine learning algorithms, including
a logistic model (dark blue) classifying a grid with non-zero burned area or not, a random-forest model (yellow) predicting percentiles of
burned area, and a quantile regression forest (dark green) predicting conditional burned-area distributions.

according to GI. In this study, we have ntree of 1200 and
mtry of 8 for the winter–spring fire season and ntree of 1500
and mtry of 7 for the summer fire season. As the length and
characteristics of the two fire seasons are different, we use
two sets of parameter configurations for the models of the
two fire seasons which include different predictor variables
(Sect. 2.2). This would ensure the prediction model is fully
optimized for each fire season to obtain the best prediction
accuracy. The predicted value of an observation is the aver-
age of the observed values belonging to the leaves of ntree
trees. Here, we use the RF model to predict percentiles of
burned area for the grids that are predicted to burn.

The benefit of applying the RF model is that it can pro-
vide the variable importance that measures the strength of
individual predictors. The variable importance is measured
by the increase in the mean square error (%IncMSE) and
the increase in node purities (IncNodePurity). The %IncMSE
is calculated by comparing the mean square error with and
without permuting variables for each tree, and the variables
with greater values of %IncMSE are more important. As for
the IncNodePurity, the changes in the residual sum of square
(RSS) before and after the split are first derived at each split,
and the final IncNodePurity of a variable is obtained by sum-
ming over the RSS of all the splits that include the variable

over all trees. Thus, a larger IncNodePurity represents higher
variable importance.

3.1.2 Quantile regression forests

QRFs are an extension of the RF (Meinshausen, 2006). QRF
develops trees in the same way as RF, but instead of calculat-
ing the average of the values from leaves of the trees to obtain
a single predicted value, the QRF estimates the conditional
distribution of a target variable. The conditional distribution
is calculated by averaging the conditional distributions from
all the trees and the predicted quantiles or percentiles are de-
rived from the final empirical distribution function. Here we
choose to predict percentiles at 45, 55, 65, 75, 85, 95, and 99
as described above. These percentiles are selected because
they can represent the full spectrum of fire sizes ranging from
small to extremely large ones. The percentiles less than 45
are typically zero-burn, so the percentile of 45 is the lowest
percentile that can possibly record both zero-burn and very
small burned area for each grid.

3.1.3 Logistic regression model

Logistic regression is used to estimate the probability of
wildfire occurrences in a grid cell by the statistical relation-
ships between wildfire occurrences and the predictor vari-
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ables. Logistic regression is defined as Pi = 1
1+e−ηi and ηi =

β0+β1Xi1+β2Xi2+ . . .+βρXiρ , where P i represents the
probability of an occurrence of wildfire in a grid cell i, ηi is
the linear combination of the predictor variables weighted by
their regression coefficients (β), xij is the value of the pre-
dictor variable j of the grid i, and β0 is the constant. The
logit function can be expressed as log ( P

1−P )= x
T
i β, where

xTi is the vector of the predictor variables and β is the vector
of the parameters. Values of P greater than 0.4 are consid-
ered to be an occurrence of wildfires and those equal to or
less than 0.4 are interpreted as nonoccurrence of wildfires. If
a grid is classified not to burn, the predicted burned area is
zero and that grid will not be processed further. On the other
hand, if a grid is classified to burn, it would be analyzed by
the RF model to predict the burned-area percentiles.

3.2 Validation method

We apply 10-fold cross-validation (CV) technique to evaluate
the model performance and to avoid overfitting. The entire
dataset (2002–2015) is randomly divided into 10 equal-sized
splits. For each round of CV, the model is trained with nine
splits of the data and the trained model is then used to predict
burned area at the remaining split.

Classification of burned or unburned grids is evaluated by
the accuracy, precision, recall, and F1 score. Precision and
recall are defined in Eqs. (1) and (2):

Precision=
True positive

True positive + False positive
, (1)

Recall=
True positive

True positive + False negaitve
, (2)

where true positive is the number of burned grids correctly
predicted, false positive is the number of grids which are un-
burned but are predicted as burned, and false negative is the
number of grids that are burned but are predicted not to burn.
The F1 score measures a model’s accuracy that combines
precision and recall:

F1=
2

recall−1
+ precision−1 . (3)

F1 score has a maximum value of 1 and a minimum value
of 0, and the higher F1 indicates a higher balance between
precision and recall. In addition to the aforementioned eval-
uation criteria, we use the receiver operating characteristic
(ROC) curve, and the area under the curve (AUC) statistics
to evaluate the classifier (Metz, 1978). The ROC curve shows
how well the model can distinguish between the true positive
rate (TPR) and the false positive rate (FPR), where TPR and

FPR are expressed by Eqs. (4) and (5):

True positive rate=
True positive

True positive + False negative
, (4)

False positive rate=
False positive

False positive+True negative
. (5)

The AUC is the area under the ROC curve, and it ranges
from 0 to 1. The greater the AUC, the better the discrimi-
nation between true positive and true negative.

Burned-area predictions are evaluated using statistical in-
dicators such as the coefficient of determination (R2), mean
absolute error (MAE), and root mean squared error (RMSE)
between the predicted and observed wildfire burned areas.
The evaluation is conducted for the winter–spring fire sea-
son and summer fire season separately. The prediction per-
formance is also quantified in terms of the model ability in
reproducing temporal variation in burned area for each grid
and spatial patterns of burned area across all the grids of the
study domain. Details on the calculation of the spatial and
temporal correlations are described in the Supplement.

4 Model validation and evaluation

Here we present the validation results at two spatial scales:
the grid scale of 0.5◦× 0.5◦ and the large-domain scale of
700 km× 700 km corresponding to the size of the study do-
main (red box in Fig. 1). The grid-scale prediction of all
possible outcomes (i.e., unburned, small burned, and large
burned area) is a unique strength of our model. To the best
of our knowledge, only few previously published studies in-
cluded unburned and small burned grids into the prediction
of wildfire burned area at a grid scale as fine as 0.5◦× 0.5◦.
At the large-domain scale, we will compare our model per-
formance with prior studies that predicted total burned area
of an ecoregion or a country.

Table 2 lists a variety of statistics representing the model
performance at the grid scale for the winter–spring fire sea-
son and summer fire season. The prediction performance of
the classifier (i.e., the second step in the model) is evaluated
by the ROC curves (Fig. S4), the AUC, accuracy, recall, pre-
cision, and F1 score. The ROC curves of both fire seasons
steer toward the upper left corner, indicating good perfor-
mance of the model with a high detection rate of fires and
a low false alarm. The AUCs for the two fire seasons are
0.82 and 0.83. The accuracy and F-1 score are 0.74 and 0.79,
respectively, for the winter–spring fire season and 0.74 and
0.77 for the summer fire season. These results indicate the
model is capable of classifying burned grids and unburned
grids with a good balance of recall and precision.

In terms of burned-area prediction at the grid scale, the
R2 reaches 0.42 and 0.40 for the winter–spring and summer
fire season, respectively. MAE and RMSE are 1.13 and 8.37,
respectively, for the winter–spring fire season, and 0.57 and
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Table 2. Model performance at grid level for the two fire seasons.

Fire season Evaluation metrics

Accuracy Recall Precision F1 score AUC R2 RMSE (km2) MAE (km2)

F1 0.74 0.88 0.73 0.79 0.82 0.42 8.37 1.13
F2 0.74 0.84 0.71 0.77 0.83 0.40 4.26 0.57

Figure 3. Comparison between observed and predicted logarithmic burned area (hectare) for the (a) winter–spring and (b) summer fire season
in selected years: 2011 (red, year of the largest burned area), 2008 (blue, year with burned area close to the 14-year mean of its season), and
2014 (black, year with burned area close to the 14-year mean of its season). The black line represents the line of unity and the blue line is a
best fit to the data by linear regression.

4.26 for the summer fire season. Before comparing these pre-
diction statistics with previously published studies that pre-
dicted gridded burned area, it is important to note that the
prediction accuracy will depend on the temporal scale (e.g.,
monthly or annual) and grid resolution at which the predic-
tion is made. The larger spatiotemporal scales are expected
to have a better prediction performance. Regarding the type
of grids to be predicted, the most challenging case is the pre-
diction including all possible outcomes of a given grid (i.e.,
unburned, with small burned areas, and with large burned ar-
eas). As fewer prior studies of a similar nature as ours pre-
dicted all possible outcomes (i.e., not only large burned areas
but also unburned and small burned cases) at the grid level
and none of these studies targeted the south central US, we
choose to compare our model performance with previously
published models that predicted gridded burned area in terms
of the approaches, the temporal and spatial resolution, and
the percent of variance explained by the model, regardless of
their study regions, periods, methods, and predictors. Chen
et al. (2016) used ocean climate indices to estimate annual
burned area at the grid resolution of 1◦× 1◦, but their pre-
diction was only for those grids with non-zero annual burned
area. They achieved a prediction R2 of less than 0.3 (correla-
tion coefficient r around 0.55) over the southern US (SUS).
Using boosted regression trees, Liu and Wimberly (2015) ob-
tained a higher R2 of 0.76 between climate variables and

burned area over the western US, but their investigation was
limited to only extremely large fires (>405 ha) and was at a
1◦× 1◦ resolution and annual time step. Compared to these
studies, our model targets a more challenging prediction (i.e.,
prediction at a finer spatial and temporal scale and for all the
grids), yet achieves a comparable if not better performance
at the grid scale.

Considering there are very few studies that predicted
burned area by grids and at the same time considered un-
burned grids or grids with small fires, we extend the compar-
ison to past studies predicting burned area of regions with
similar spatial scales of 0.5◦× 0.5◦. Urbieta et al. (2015)
used multiple linear regression (MLR) to predict the an-
nual burned area of provinces and national forests in the
southern countries of the European Union (EUMED) and
Pacific western US (PWUSA), with the mean domain size
of 108 km× 108 km. Their reported median R2 is 0.28 for
EUMED and 0.22 for PWUSA, smaller than our value (0.4).
Using the MLR method, Carvalho et al. (2008) predicted
monthly burned area of Portuguese districts of sizes rang-
ing from ∼ 25 km× 25 km to 100 km× 100 km, and their
R2 is between 0.43 and 0.80. The better model performance
was present only for some districts with evenly distributed
burned area, whereas the districts with highly right-skewed
burned-area distributions (Evora and Portalegre) had a pre-
diction R2 of 0.43 to 0.45. Bedia et al. (2014) predicted
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Figure 4. Map of monthly mean observed and predicted burned area averaged from 2002 to 2015 for the (a) winter–spring and (b) summer
fire season.

monthly burned area of the phytoclimatic zones in Spain
(∼ 25 km× 25 km to 100 km× 100 km) by using MARSs
and obtained R2 ranging from 0.01 to 0.37. In comparison
with these results, the R2 of 0.42 and 0.40 that we achieve
for the two fire seasons at a grid resolution of 0.5◦× 0.5◦ is
a significant improvement for situations with unevenly dis-
tributed burned area. In addition, by predicting all possible
outcomes for all the grids within a large domain, our model
framework would be more flexible and practical to be applied
to other domains.

The aforementioned statistics demonstrate the general ca-
pability of our four-step model in predicting gridded burned
area over the study period. We select three specific years
to further illustrate the model performance: 2011 with the
largest domain-mean gridded burned area, and 2008 and
2014 with the domain-mean gridded burned area close to
the 14-year mean for the winter–spring and summer fire sea-
son, respectively (Table S4). Figure 3 shows the selected CV-
predicted and observed monthly burned area of these years

for each fire season. The R2 is 0.42, 0.51, and 0.66 for 2011
(combing both seasons), 2014 (the winter–spring season),
and 2008 (the summer fire season), respectively, after exclud-
ing misclassified grids. MAE of 2011, 2014, and 2008 are
5.25, 0.77, 0.43 and RMSE are 21.06, 5.87, and 1.75. The
detailed statistics of the model performance for each year
are also shown in Table S5. The results show that the model
has a better performance in predicting gridded burned area
for normal years of 2008 and 2014 than for the exception-
ally large wildfire year of 2011. Although larger MAE and
RMSE are shown in 2011 (peak year), our model predicts
significantly larger mean gridded burned area for the peak
months. For 2011, the large burned area can be well modeled
but the small burned area (log of burned area <2) is overpre-
dicted. This can be explained by the fact that the extremely
hot and dry weather during 2011 caused fire-favorable condi-
tions across the study domain. Due to the lack of reliable and
detailed information about ignition and suppression, it is dif-
ficult for the model to discriminate between small and large
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fires given widespread extreme drought conditions across
the whole domain during 2011 (Long et al., 2013; Nielsen-
Gammon, 2012).

The model performance is further evaluated in terms of its
ability in reproducing the spatiotemporal patterns of monthly
mean burned area for the two fire seasons (Fig. 4). The cor-
relation coefficient between the 14-year mean observed and
predicted burned area is 0.82 and 0.80 for the winter–spring
and summer fire season, respectively. For the whole study
period, more than 60 % of the months have a spatial corre-
lation larger than 0.5 for both fire seasons between the ob-
served and predicted monthly burned area. It is noteworthy
that such performance is achieved without introducing any
coordinate variables like longitude or latitude as predictors.
This indicates the chosen predictors contain sufficient infor-
mation to capture the spatial heterogeneity of the environ-
mental factors, and thus the framework of the model could
be easily adopted for other regions, making it possible to be
incorporated into climate models in future applications. Tem-
porally, more than 70 % of the grids have a correlation higher
than 0.5 between the observed and predicted time series of
burned area (combined the two fire seasons) (Fig. S5). These
results demonstrate the model has a certain ability in predict-
ing both spatial and temporal variation in the burned area at
the grid scale across the study domain.

Even though bias may be introduced in the multi-step
model, the developed four-step model can achieve higher ac-
curacy and alleviate the issue of unevenly distributed dataset.
To prove that, we compare the model performance of our
four-step model with the prediction performance of simula-
tions using MLR, only the RF model and another decision-
tree-based ensemble machine learning algorithm called eX-
treme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016). The results are listed in Table S2 and the descrip-
tion as well as the parameters of XGBoost are included in
the Supplement (Table S3). Our four-step model has a lower
MAE, which is 27 % and 33 % lower than the MLR model
for the winter–spring and summer fire season, respectively.
Compared to the RF model, our four-step model has a lower
MAE by 15 % and 19 % for the winter–spring and summer
fire season, respectively. Compared to the XGBoost model,
the MAE from our four-step model is 11 % and 15 % lower
for the two fire seasons. The distribution of MAE from the
10-fold cross validation shows that our four-step model has
a smaller median MAE but a larger range of MAE compared
to other models (Fig. S6). In addition, the distribution of per-
centiles is more uniform than the distribution of the burned
area, as shown in Fig. S2 and the skewness value. Details
about the calculation of skewness are described in the Sup-
plement. Larger positive skewness value indicates a more
highly right-skewed distribution. The skewness of the burned
area is 37.4 and 33.8 for the winter–spring and summer fire
season, while the skewness of percentiles is 0.7 and 0.96,
showing that the strategy of the four-step model can effec-
tively reduce unevenness of the distribution.

In addition to the grid-scale statistics, we evaluate the
model performance at the large-domain scale by adding up
all the grid-level predictions to obtain the total burned area
of the study domain by months. Figure 5 shows the time
series of the predicted total burned area over south central
US in comparison to the observed ones for the two fire sea-
sons. The domain-scale prediction explains 50 % and 79 %
of the month-to-month variability of burned area for the
winter–spring and summer fire season, respectively. Higher
R2 for the summer fire season can be explained by the stricter
fire regulations during summer in the southern states, such
as Texas (While and Hanselka, 2000). For the summer fire
season, under strict fire regulations, environmental factors
such as high temperature or low relative humidity can play a
more important role in wildfire development. For the winter–
spring fire season, more human perturbations may be in-
volved. As the human factor in the model does not capture
such perturbation, less variability is explained by the model
for the winter–spring season. MAE of the monthly burned
area across the whole domain is 251.3 km2 for the winter–
spring fire season and 100.7 km2 for the summer fire sea-
son. Generally, our model is able to capture the interannual
variability of burned area, and the prediction accuracy of our
model in terms of R2 is equivalent to or better than most of
the published studies on the ecoregion scale or country scale,
as shown in Table S1.

5 Contributions of environmental factors to predicted
wildfire burned area

5.1 Individual variable importance at grid scale

Before discussing the environmental controls on wildfire
burned area across the study domain, it is useful to under-
stand the dominant factors controlling the burned area at the
grid scale. One advantage of the random-forest approach is
that it provides the variable importance metrics that can mea-
sure the power of predictor variables in the prediction. Fig-
ure 6 shows the top 14 predictors ranked by %IncMSE to
illustrate the intricate relationships between fires, weather,
climate, and fuel. The top 14 variables are chosen because
they represent the top quarter (25 %) of the selected predic-
tor variables. In addition, a sensitivity test shows that the
largest drop in the %IncMSE occurs around the 15th vari-
able ranked by importance, as shown in Table S6. To ensure
the reliability of the inferred importance of predicted factors,
we conduct 50 times 10-fold cross validation by randomizing
the order of all the data each time. Figure S7 shows the distri-
butions of %IncMSE for each variable ranked by the median
%IncMSE. Even though the numerical values of feature im-
portance vary in different runs, the variable ranks by median
values stay the same, indicating the robustness of the feature
importance identified by the RF model.
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Figure 5. Time series of observed (black line) and predicted total burned area (red line) over south central US for the (a) winter–spring
and (b) summer fire season.

Figure 6. Relative importance of the top 14 variables presented by increase in mean square errors (%IncMSE) for (a) the winter–spring fire
season (b) summer fire season.

For both fire seasons, RH anomaly is the most important
predictor of wildfire burned area at the grid scale (Fig. 6).
This finding broadly supports past studies that highlighted
the importance of RH on burned area (Riley et al., 2013;
Ruthrof et al., 2016). Yet, our model particularly reveals the
response of fire burned area to the changes in RH anomaly,
which is a climate variable as opposed to a weather variable.
“rhum” is the actual RH, which can vary by location and sea-
son, while RH anomaly measures the departure of rhum from
its long-term average due to climate change and/or climate
variability. For the study domain and time period, the corre-
lation between RH anomaly and RH is 0.66. Although they
have a moderate correlation, their values have different phys-
ical meanings, and both of them are included in the model.
For example, for grids with rhum of ∼ 70 %, rhum_anomaly
can range from −11.16 % to 15.35 %. For the same rhum
value of ∼ 70 %, positive rhum_anomaly indicates a rela-
tively wetter condition and negative rhum_anomaly a rela-
tively dryer condition compared to their long-term condition

in the past. The variable importance metric highlights that
RH anomaly, which indicates the changes in the fire-season
RH relative to its historical climatology, ranks higher than
the actual value of the fire-season RH.

While both fire seasons have RH as the top driver of
burned area, notable differences are found for the relative
importance of other variables between the two fire seasons.
For the summer fire season, temperature anomaly and max-
imum temperature anomaly are the other two climatic fac-
tors besides RH anomaly that are included in the top 14 vari-
ables. While RH anomaly and temperature anomaly are ex-
pected to correlate to some extent, the slope from a linear
regression of RH anomaly (y) on temperature anomaly (x)
is substantially greater (in absolute value) in the summer
fire season (slope=−3.7) than that in the spring fire sea-
son (slope=−0.89) (Fig. S8). This highlights the stronger
dependence of RH anomaly on temperature anomaly in the
summer. Additionally, larger burned areas (75th percentile
and above; black dots in Fig. S8) mainly occur under the
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condition of low RH anomaly and high temperature anomaly
(bottom-right corner), in particular for the summer fire sea-
son. The results suggest that higher temperature coupled with
lower relative humidity can cause drier fuel and create favor-
able conditions for fires to start, spread, and burn more in-
tensely, in particular during the summer fire season (Williams
et al., 2013; Holden et al., 2018).

For the winter–spring fire season specifically, the long-
term averages of monthly total precipitation and monthly
means of daily precipitation (apcp_avg and asum avg) are
identified as the key climate variables (Fig. 6a). These two
variables represent the precipitation normal, indicating the
amount of available moisture that could affect fuel distribu-
tions and the tendency of fire activities (Keyser and West-
erling, 2017; Westerling and Bryant, 2008). The averaged
SPEI of the preceding 4 months is the second most impor-
tant variable and the highest-ranked weather variable, which
is even more important than the SPEI during the fire season.
The averaged SPEI of the preceding 3 months and 5 months
is also included in the top 14 variables. The 3–5 months’
time lag coincidentally corresponds to the interval between
the two fire seasons. Thus, our results indicate that burned
area in this season is highly dependent on the pre-fire-season
drought conditions, which is in agreement with prior stud-
ies (Scott and Burgan., 2005; Riley et al., 2013; Turco et al.,
2017). To better understand how the changes in top variables
affect the burned area, we use the partial dependence plots
to show the marginal effect of a variable on the prediction
performance of the built model (Friedman, 2001). Figure S9
shows the partial dependence plots of the top four variables
(RH anomaly, SPEI_mean4m, apcp_avg, and temp_sd) for
the winter–spring fire season. For RH anomaly, the fitted
logarithmic burned area becomes larger if the RH anomaly
is smaller than 2 % (Fig. S9a). This change likely indicates
the sensitivity of burned area to the fire-season moisture. The
similar pattern is also shown in the partial dependence plot
of the mean SPEI of the preceding 4 months (Fig. S9b).
Larger fitted burned area is observed to be associated with
the preceding SPEI smaller than zero, suggesting that burned
area in this season is highly dependent on the pre-fire-season
drought conditions. As for the average precipitation of 1979–
2000, the fitted burned area increases as the average pre-
cipitation increases (Fig. S9c). This implies the shift of fire
regimes in that larger fires occur in the areas with more aver-
age precipitation in the past. For the standard deviation of
temperature during 1979–2000, the fitted burned area de-
clines dramatically when the standard deviation of temper-
ature is larger 9 K, suggesting the threshold effect of temper-
ature variation on the burned area in the winter–spring fire
season (Fig. S9d). In addition to the top four variables, which
are all meteorological variables, the average of LAI and sum
of neighboring LAI for months t−1 to t−6 are the only fuel
variables that are selected among the top 14 variables in the
winter–spring fire season (Fig. 6). Although these two vari-
ables rank below others among the top 14 variables, they are

the fifth and sixth most important variables when excluding
the fixed variables. Thus, when considering the importance
of the time-varying variables, we can infer that fuel abun-
dance together with drought conditions in the pre-fire season
determine the amount of dry fuel, which likely exerts the pri-
mary controls of the burned area during the winter–spring
fire season.

For the summer fire season, important weather variables
include the average of monthly accumulated precipitation of
the preceding 1 month and the mean SPEI of the preceding
1 month, 2 months, and 3 months (Fig. 6b). These variables
are known to affect burned area by influencing fuel moisture.
Consistently, fuel moisture as represented by soil moisture
is identified as the only fuel variable among the top 14 vari-
ables in the summer fire season. These results suggest that
fuel drying during the summer fire season driven by both in-
creasing temperature and pre-fire season drought conditions
is the pivotal process determining wildfire burned area in the
summer. Similar to our findings, rising summer temperature
under climate change was found to cause fast fuel dryness
and increase fire activity in the western US (Williams et al.,
2013; Holden et al., 2018). As the partial dependence plots
show (Fig. S10), the large burned area is associated with
low values of RH anomaly, minimum RH anomaly, the mean
SPEI of the preceding 2 months, and long-term (1979–2000)
standard deviation of temperature for the summer fire sea-
son. The fitted logarithmic burned area increases rapidly as
the RH anomaly decreases toward zero and the increase in
burned area reaches a maximum at RH anomaly of −14 %
(Fig. S10a). Compared to the partial dependence plot for RH
anomaly, the fitted burned area increases more rapidly with
decreasing minimum RH anomaly (Fig. S10c). At below
zero, the sensitivity of log(burned area) to the minimum RH
anomaly is 0.04 %−1 (Fig. S10c), while the corresponding
sensitivity to RH anomaly is only 0.02 %−1 (Fig. S10a). The
stronger sensitivity of burned area to minimum RH anomaly
indicates the stronger effect of extremely low humidity con-
ditions on fire growth as compared with the mean RH condi-
tions. For the standard deviation of temperature during 1979–
2000, larger burned area is observed with a smaller standard
deviation of temperature in the past. This suggests burned
area would become larger for the grids with less variation in
temperature in the summer. As for the mean SPEI of the pre-
ceding 2 months, we see an increase in fitted burned area
at zero, with the largest increase at −1.8, which supports
the importance of the fuel drying process in the summer fire
season. For both fire seasons, RH anomaly, mean SPEI of
preceding months, and standard deviation of temperature for
1979–2000 are selected as the top four predictors, highlight-
ing the common importance of these variables in the two sea-
sons but with different thresholds and magnitudes in their ef-
fects on burned area. The difference in controlling factors for
wildfires between the two fire seasons can be also demon-
strated by the difference in correlation coefficients between
burned area and predictors in the two seasons. The corre-
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lation between burned area and the average daily precipi-
tation of months t − 1 is −0.05 and −0.28 for the winter–
spring and summer fire season, respectively. The correlation
between burned area and the average of SPEI of pre-fire sea-
sons (months of t − 1 to t − 3 for winter–spring and t − 1
to t − 2 for summer) is −0.28 and −0.34. Although lower
moisture during the pre-fire season increases burned area for
both fire seasons, the summer fire season has a stronger nega-
tive correlation between burned area and moisture during the
pre-fire season. For the summer, since vegetation is relatively
sufficient, fuel drying in the fire season and pre-fire season is
a more important control for wildfire development. For the
winter–spring fire season, as the vegetation amount is not as
abundant as in the summer fire season, both fuel abundance
and fuel drying in the pre-fire season are critical for wild-
fire development. The balance between the two factors may
explain the weaker negative correlation between burned area
and moisture in the pre-fire season for the winter–spring fire
season.

Figure S11 shows the correlation coefficients between the
predictor variables. Most of the important variables have
weak to moderate correlations (r < |0.7|) between each
other. The exceptions are for the fixed climate variables
(e.g., asum_avg vs. apcp_avg and temp_sd vs. tmax_sd)
and the antecedent variables (e.g., SPEI_mean4m and
SPEI_mean5m) for both fire seasons. This is expected be-
cause the long-term mean or standard deviation of the same
types of meteorology do not change by time and the aver-
age of antecedent drought conditions (SPEI) may not vary
a lot from including or excluding a single month. Although
there is collinearity between the predictor variables, the lo-
gistic model and the RF model we use in this study are rela-
tively insensitive to collinearity. Random forest as a machine
learning tool is less unaffected by the issue of multicollinear-
ity than traditional regression methods because the random-
forest model randomly selects predictors used for each tree
so that the probability of sampling strongly correlated vari-
ables in a particular tree is largely avoided (Siroky, 2009).
To prove that the collinearity would not be an issue for our
model, we calculate the variance inflation factor (VIF) for
the random-forest model by a bootstrapping of seven predic-
tors (the number of predictors used in each tree) out of all
58 potential predictors for 5000 times. Each sampling yields
seven VIF values, and hence we can obtain a distribution of
35000 VIFs for 5000 samplings. Figure S12 shows the dis-
tribution of VIFs for all the predictors. The distribution has
a median of 1.67 for the winter–spring and a median of 1.62
for the summer fire season. The distribution has about 96 %
of the VIF values smaller than 10 for both seasons, demon-
strating the minimized multicollinearity in the random-forest
model. In addition, we conduct a sensitivity test where the
model uses predictor variables that have lower degrees of
collinearity (|r|<0.5), compared to the results using vari-
ables with higher degrees of collinearity (|r|<0.7). The re-
sults show that removing the predictors that have a higher de-

gree of collinearity causes larger biases in the classification
of burned grids and the prediction of extremely large fires
(Table S7). The overall MAE and RMSE are also slightly de-
graded in the sensitivity test. That is because although some
variables may have a moderate correlation, they have differ-
ent physical meanings and thus provide different predictive
information. Therefore, we include all the variables in the
model and allow the algorithms to choose the predictors for
better performance.

Overall, the analysis of variable importance and partial de-
pendence plots reveals the common and different characteris-
tics of the wildfire development between the two fire seasons
and show semi-quantitatively that drought conditions in the
preceding months (3–5 months for the spring fire season and
1–3 months for the summer fire season) may be more impor-
tant than within-season conditions. Furthermore, we demon-
strate that the effect of climate variability on burned area is
consequential and even more influential than concurrent fire
weather. This aspect has not been well documented or quan-
tified in past studies for the south central US, partly due to
a lack of long-term observations of wildfires over this re-
gion. Although we did not use long-term wildfire data (only
14 years of data used), with the 10-fold cross-validation ap-
proach, the training dataset contains around 16277 samples
for each fold. Such a large sample size is enough to capture
the variability in wildfire activity and its response to the re-
cent decadal climate if we assume wildfire relationships with
the environmental factors contain a certain uniqueness for
each individual grid. Considering that the majority of grids
over the study domain are grassland/plain with a short fire
interval (∼ 1 year) (Barrett et al., 2010), the 14-year data are
suitable for assessing fire variability for our study domain.
Within this 14-year period, some regions (e.g., SE Texas) ex-
perienced the largest wildfire and the most severe single-year
drought in the past 50 years (i.e., 2011 Texas wildfire). For
future applications, our model can be applied to other regions
with longer fire return intervals if more data are included. As
the accuracy of our model is not quite high, uncertainties may
exist in the rank of variable importance from the RF model.
However, the selected top 14 variables all have physical link-
ages to wildfire burned area, and they have been discussed in
this section and prior studies.

5.2 Relative importance of environmental controls at
large scale

The variable importance metrics presented in the previous
section reveal the relative importance of individual predic-
tors. As mentioned before, these predictors are purposely se-
lected from four broadly defined categories of environmental
controls on wildfire burned area, namely climate, weather,
fuel, and fixed geospatial. Here the climate category includes
only variables of climate anomalies. The weather and fuel
category are comprised of both fire season and antecedent
weather and fuel conditions, respectively. The fixed geospa-
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tial category includes all the variables that do not change
with time, including land types, ecoregion types, population,
and 22-year means and standard deviations of meteorological
variables (i.e., climate normals). Given that variables within
the same category may work in conjunction to create condi-
tions conducive to wildfires, in this section we examine the
composite influence of predictors by category and quantify
the contributions of these environmental controls to wildfire
burned area. To do so, the prediction model developed from
Section 3 is used to decompose the effect of different envi-
ronmental controls across our study domain by perturbing all
the variables belonging to one category at a time. The details
of the decomposition method are described in the Supple-
ment.

Figure S13 shows the time series of the contributions of
different environmental controls on the burned area for the
two fire seasons. The results show that the weather, fuel, cli-
mate, and fixed effects tend to increase the burned area for the
large burn events (e.g., July 2011 in the summer fire season).
To further investigate whether or not all factors would in-
crease the burned area, we calculate the effect of each group
in percentage by dividing the total burned area of the month,
as shown in Fig. S14. For the months with the large burned
area (e.g., January 2006 and September 2011), weather, fuel,
climate, and fix effect tend to increase burned area. This is
consistent with the results in Fig S8. This is not the case
for some months with the relatively small burned area, such
as February 2012 where the interaction (−143 %), climate
(−1.4 %), and weather effect (−33.8 %) reduce the burned
area but fuel (12 %) and fix effect (266 %) together increase
the burned area. As the number of variables in each envi-
ronmental control category is different, we first normalize
the absolute contribution of one environmental control by the
number of variables in that category and then compare each
category’s contribution in scaled absolute percentage, which
is defined as the normalized absolute contribution of one en-
vironmental control divided by the summation of normalized
absolute contributions over all the categories. The scaled ab-
solute percentage represents the average contribution from
all the variables in one environmental category, so the vari-
able importance presented here is not affected by the number
of variables we include in each category. Figure S15 shows
the time series of the scaled absolute percentage of each cate-
gory. For both fire seasons, on average, the climate and fixed
categories have larger contributions to the burned area than
other categories, although their relative importance varies by
time. Figure 7 and Table S8 present the mean effect of the en-
vironmental controls where the scaled absolute percentage of
each category of environmental controls is averaged over the
whole study periods. Figure 7 clearly shows that the climate
category on average has the largest contribution to the burned
area for both fire seasons, with the mean scaled absolute con-
tribution of 33 % and 35 % for the winter–spring and summer
fire season, respectively. This suggests climate variability is
a significant factor to explain wildfire burned area over our

Figure 7. The mean scaled absolute percentage of the environmen-
tal controls for the winter–spring (blue) and summer fire season
(red).

study domain. This result is consistent with previous stud-
ies that demonstrated the significant contribution of chang-
ing climate to the total burned area of ecoregions in the west-
ern US (Littell et al., 2009; Swetnam and Anderson, 2008;
Yue et al., 2013). For example, increasing temperature and
earlier spring snowmelt due to climate change are highly as-
sociated with increased large wildfire activity in the western
US (Westerling et al., 2006). Another study showed that fire-
year climate variables such as average spring temperature are
predictive variables that could improve the predicting prob-
ability of high-severity fires in the western US (Keyser and
Westerling, 2017). Additionally, the fixed effect that com-
prises the geospatial variables and past climatology is ranked
as the second most important control (Fig. 7). This is con-
sistent with the findings of Keyser and Westerling (2017),
which revealed the importance of long-term climate normals
in controlling large fire occurrences in the western US.

Comparing the effects of the environmental controls be-
tween the two fire seasons, we find the fuel effect is signifi-
cantly more important in the winter–spring fire season, while
weather and climate effects are more substantial in the sum-
mer fire season. This can probably be explained by the differ-
ent characteristics of the two fire seasons. As biomass growth
is relatively limited in the winter–spring fire season, the ef-
fect of fuel (mainly from vegetation in the pre-fire growing
season) is likely the limiting factor for wildfires. On the other
hand, vegetation is relatively sufficient during the summer
growing fire season and thus fuel abundance would not be
a constraint of wildfires (Littell et al., 2009; Zhang et al.,
2014). Yet, fire weather that determines fuel moisture is a
substantial factor in the summer fire season (Fig. 7).

The above analysis represents the relative importance of
the environmental controls at the large-domain scale. At the
grid scale, we calculate the average of variable importance
(%IncMSE) from RF (Sect. 3.1.1) of each category and use
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the category-averaged variable importance to represent the
relative importance at the grid scale (Table S9). Climate vari-
ables are found to have the largest importance in controlling
burned area at the grid scale for the two fire seasons, with the
mean %IncMSE of 12.09 and 19.18 for the winter–spring
and summer fire season, respectively. This is consistent with
the results based on the large-domain scale. Fuel effect out-
weighs weather effect on the grid scale in the winter–spring
fire season, while weather effect is more important in the
summer fire season, both consistent with the aforementioned
analysis based on the large-scale domain (Table S9). How-
ever, the fixed effect estimated at the grid scale is less im-
portant than at the large-scale domain (Table S9), and this is
partly due to how these variables are encoded in the model.
Fixed variables consist of past climatology and geospatial
variables (i.e., land use, ecoregion, and population). The
geospatial variables, except population, are encoded as cate-
gorical variables in the prediction model. For example, forest
ecoregion is coded as 0 or 1 for a given grid, with 0 repre-
senting non-forest and 1 representing a forest. For such an
encoding method, each categorical variable (e.g., forest vs.
non-forest) tends to have a smaller relative importance score,
compared to the relative importance score of other variables
encoded by continuous values. As RF measures the effect of
a specific split on the improvement in model performance
and aggregates the improvement of all the splits with a spe-
cific variable, the fragmented scores for each category are
likely smaller than the scores reflecting all of the categories.
Therefore, for the relative importance at the grid level mea-
sured by RF, the effect of a single geospatial variable such as
a land type on the burned area is trivial. When we average the
relative importance of all the fixed variables including many
small scores, the resulting average importance still becomes
a small value.

6 Concluding remarks

We present a model consisting of multiple machine learn-
ing methods to predict monthly burned area over south cen-
tral US at 0.5◦× 0.5◦ grid cells. The prediction model is
able to alleviate the issue of unevenly distributed burned area
and consequently improves the model capability of predict-
ing large burned area at a finer spatial and temporal scale.
The predicted burned area shows a good agreement with
the observed burned area at both the grid and large-domain
scale. At the grid scale, the classification component of the
model achieves an AUC of 0.82 and 0.83 for the winter–
spring and summer fire season, respectively. With respect to
burned-area prediction, a CV R2 of 0.42 and 0.40 is achieved
for the winter–spring and summer fire season, respectively,
which makes a significant improvement to the prediction for
the cases with unevenly distributed burned area compared
to most past studies. Our four-step model is able to predict
the spatial patterns of the 14-year mean burned area, with

a correlation coefficient between mean observed and pre-
dicted burned area of 0.82 and 0.80 for the winter–spring
and summer fire season, respectively. Throughout the study
period, more than 60 % of the months have a spatial corre-
lation larger than 0.5. When comparing the time series of
observed and predicted burned area of each grid across the
study domain, over 70 % of the grids have a correlation coef-
ficient larger than 0.5. At the large-domain scale, the predic-
tion model can explain 50 % and 79 % of the interannual vari-
ability of wildfire burned area for the winter–spring and sum-
mer fire season, respectively. The validation results demon-
strate that the model has certain skills in predicting monthly
burned area at both grid scale and large-domain scale.

Although the model shows a better ability to predict
monthly burned area at both grid scale and large-domain
scale than past studies of similar nature, it has several lim-
itations. First, errors might be propagated through our serial
model and lead to lower accuracy. For example, when the
burned grids are predicted not to burn, low bias occurs be-
cause the burned grids are not able to enter step 3. Similarly,
the inclusion of unburned grids in step 3 will introduce a pos-
itive bias. Second, random forest or quantile regression for-
est cannot predict burned area greater than it observes before,
i.e., the maximum burned area of any of the available grids.
We should point out that such limitation is applicable only
at grid level and that upper limit is taken from all available
grids of the whole training period, which we refer to as the
global upper limit per grid. For example, the global upper
limit is 514 km2 per grid for the winter–spring fire season,
and 238 km2 per grid for the summer fire season. For a sin-
gle grid, burned-area prediction can be greater than what this
grid had experienced before by learning from other grids, al-
though the prediction per grid cannot exceed the global upper
limit. Figure S16 shows an example for a randomly selected
grid box. For this grid, the model predicts the largest burned
area on February 2008, consistent with observed burned area.
This demonstrates that any single grid can predict burned
area larger than the grid maximum by learning from other
grids, and as such a larger total burned area for the domain
can be predicted by the model under future climate change.
In addition, we verify that the global upper limit is a suffi-
ciently large value because of the intrinsically skewed nature
of burned-area distributions. Figure S17 shows the distribu-
tion of gridded burned area for year 2011, an extremely se-
vere fire year for the study domain, in comparison to the dis-
tribution of all other years during 2002–2015. It can be seen
that the majority of the burned areas for the extreme year are
still within the range of the observed burned area in 2002–
2015, with only two grids having burned areas larger than the
global upper limit from 2002 to 2015 (excluding 2011). The
total burned area of those exceedance grids only accounts for
20 % of total burned area for 2011, which is within the stated
uncertainty range of our prediction model. Third, as machine
learning models are data-driven, data quality of different in-
put datasets may introduce biases as the input datasets come
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from a wide variety of data sources and errors in one type of
input data may cause sequential errors in the prediction. For
instance, biases in the NARR meteorological data can further
lead to incorrect fire–meteorology relationships learned by
the model. Fourth, this study focuses on the effects of envi-
ronmental controls on burned area under present-day human
management practices and human activity. As such, we do
not examine the effects of time-varying socioeconomic fac-
tors on burned area, such as human actions that affect wild-
fires through ignition, suppression, or modifying fuel distri-
bution (Andela et al., 2017; Bowman et al., 2011; Mann et
al., 2016; Syphard et al., 2007). Given that human activity
is one of the major controls on fire activity, future work is
needed to better understand the role of human activity en-
gaged with climate change and its implications for wildfire
control. Finally, the pre-defined parameters that are used in
the model, including the percentiles and subgroups, may in-
duce uncertainties. To understand the related uncertainties,
we switch the pre-defined percentiles but fix the subgroups
in the first sensitivity experiment (Table S10). In this experi-
ment, the last three quantiles are changed to the median val-
ues between a new set of lower and upper bounds. The sec-
ond experiment is conducted by changing the number of sub-
groups, their ranges, and the corresponding percentiles. Gen-
erally, changing pre-defined parameters has little effect on
overall MAE for the two fire seasons, but the MAE of large
burned area becomes larger and the standard deviation of the
predicted values becomes smaller. Thus, the pre-defined pa-
rameters mostly affect the spread of the predictions and the
prediction of large burned areas. Despite this sensitivity, the
prediction model with the chosen settings (i.e., percentiles
and subgroups) is able to predict burned area at 0.5◦× 0.5◦-
grid scale and achieves a higher prediction accuracy com-
pared to prior studies.

The individual variable importance from the RF model is
analyzed and discussed. For both fire seasons, RH anomaly
followed by drought conditions in the preceding months (3–
5 months for the winter–spring fire season and 1–3 months
for the summer fire seasons) are the two top variables in pre-
dicting burned area at the grid scale. For the winter–spring
fire season specifically, the average of LAI and sum of neigh-
boring LAI of the preceding 6 months are the only two
fuel variables that are identified in the top 14 variables, and
they rank fifth and sixth when only considering time-varying
variables. The findings suggest that fuel abundance together
with drought conditions during the pre-fire season regulates
the abundance of dry fuel, which is the primary control of
fire burned area during the winter–spring seasons. For the
summer fire season, temperature anomalies, the average of
monthly accumulated precipitation of the preceding 1 month,
and fire season soil moisture are important variables in pre-
dicting burned area. This suggests that temperature variabil-
ity and pre-fire season drought can speed up fuel drying and
lead to wildfires in the summer. The model highlights the
effect of climate variability on burned area as well as the dif-

ferent environmental controls of burned area for the two fire
seasons.

Besides the relative importance of individual predictors,
we also analyze the relative importance of the environmental
controls by four categories – climate, weather, fuel, and fixed
geospatial – at both the grid and large-domain scale. The rela-
tive importance of these factors is generally consistent at the
two scales. The climate variable on average has the largest
contribution to the burned area for both fire seasons, with the
mean scaled absolute contribution of 33 % and 35 % to the
burned area at the large-domain scale for the winter–spring
and summer fire season, respectively. For the winter–spring
fire season, the fuel variable on average has larger impor-
tance compared to the weather variable, while for the sum-
mer fire season, the weather variable is more dominant than
the fuel variable. The difference in the relative importance of
the environmental controls between the large-domain scale
and grid scale mainly lies in the predominance of the fixed ef-
fect. The fixed effect is ranked as the second most important
control at the large-domain scale, but it is not as important at
the grid scale.

Predictor variables representing climate variability are
ranked as the most important variables by our prediction
model. This reinforces the importance of regional climate
variability as the key driver for wildfires that have been re-
vealed by past studies for other regions, yet our study is
among the first to explicitly demonstrate such importance
for the south central US. For this region, our model further
reveals drought conditions in the preceding 3–5 months of a
fire season as an important predictor for wildfire burned area.
This antecedent timescale would be valuable for fire manage-
ment and fire prediction in the future. While the relative im-
portance of environmental controls is largely consistent be-
tween the large-domain scale (∼ 700 km× 700 km) and the
grid scale (∼ 50 km× 50 km), our analysis at different spa-
tial scales would help estimate how the relationship between
wildfire and environmental controls will change as a function
of spatial scales, which could be used to improve wildfire
modeling and prediction in different models.
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