Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 3447–3462, 2019
https://doi.org/10.5194/acp-19-3447-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Regional assessment of air pollution and climate change over...

Atmos. Chem. Phys., 19, 3447–3462, 2019
https://doi.org/10.5194/acp-19-3447-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Mar 2019

Research article | 19 Mar 2019

Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling

Haotian Zheng et al.

Related authors

Assessment of meteorology vs control measures in China fine particular matter trend from 2013–2019 by an environmental meteorology index
Sunling Gong, Hongli Liu, Bihui Zhang, Jianjun He, Hengde Zhang, Yaqiang Wang, Shuxiao Wang, Lei Zhang, and Jie Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-348,https://doi.org/10.5194/acp-2020-348, 2020
Preprint under review for ACP
Short summary
Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic in North China Plain: a response modeling study
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-522,https://doi.org/10.5194/acp-2020-522, 2020
Revised manuscript accepted for ACP
Short summary
Air Quality Impact of the Northern California Camp Fire of November 2018
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-541,https://doi.org/10.5194/acp-2020-541, 2020
Revised manuscript accepted for ACP
Short summary
Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China
Jia Xing, Dian Ding, Shuxiao Wang, Zhaoxin Dong, James T. Kelly, Carey Jang, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 19, 13627–13646, https://doi.org/10.5194/acp-19-13627-2019,https://doi.org/10.5194/acp-19-13627-2019, 2019
Short summary
Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019,https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 2015–2017
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020,https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Effects of global ship emissions on European air pollution levels
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020,https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020,https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations
Hyun Cheol Kim, Tianfeng Chai, Ariel Stein, and Shobha Kondragunta
Atmos. Chem. Phys., 20, 10259–10277, https://doi.org/10.5194/acp-20-10259-2020,https://doi.org/10.5194/acp-20-10259-2020, 2020
Short summary
Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques
Satoru Chatani, Hikari Shimadera, Syuichi Itahashi, and Kazuyo Yamaji
Atmos. Chem. Phys., 20, 10311–10329, https://doi.org/10.5194/acp-20-10311-2020,https://doi.org/10.5194/acp-20-10311-2020, 2020
Short summary

Cited articles

Beijing Municipal Bureau of Statistics: Beijing Statistical Yearbook 2014, China Statistics Press, Beijing, China, 2015. 
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006. 
Briggs, G. A.: Plume Rise Predictions, in: Lectures on Air Pollution and Environmental Impact Analyses, edited by: Haugen, D. A., American Meteorological Society, Boston, MA, USA, 59–111, 1982. 
Cai, S., Li, Q., Wang, S., Chen, J., Ding, D., Zhao, B., Yang, D., and Hao, J.: Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing, Environ. Pollut., 238, 230–237, https://doi.org/10.1016/j.envpol.2018.03.036, 2018. 
Chen, L., Sun, Y., Wu, X., Zhang, Y., Zheng, C., Gao, X., and Cen, K.: Unit-based emission inventory and uncertainty assessment of coal-fired power plants, Atmos. Environ., 99, 527–535, https://doi.org/10.1016/j.atmosenv.2014.10.023, 2014. 
Publications Copernicus
Download
Short summary
The heavy air pollution in the Beijing-Tianjin-Hebei (BTH) region is a global hot topic. We established a unit-based industrial emission inventory for the BTH region. The inventory significantly improved air quality modeling results; this improvement subsequently contributes to an accurate source apportionment of haze pollution and more precisely targeted decision making.
The heavy air pollution in the Beijing-Tianjin-Hebei (BTH) region is a global hot topic. We...
Citation
Altmetrics
Final-revised paper
Preprint