

Supplement of

Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling

Haotian Zheng et al.

Correspondence to: Shuxiao Wang (shxwang@tsinghua.edu.cn) and Bin Zhao (zhaob1206@ucla.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

There are several studies estimating emissions in BTH region. We compare emissions reported after 2014 (the base year is 2010 or later) with our study, which are shown in **Fig.S3**.

For SO₂, NOx and PM_{2.5}, in Beijing, the total emissions in our study (for 2014) are significantly lower than those in previous studies (for 2010-2013), probably because stringent control measures have been

- 5 implemented during 2010-2014. In Tianjin and Hebei, the emission estimates from different studies are much closer to each other. For NMVOCs, Wang et al. (2014), Wu et al. (2017) and Cai et al. (2017) generally have similar results to this study. The NMVOCs emissions by Zheng et al. (2017) are higher in Beijing and Tianjin, and lower in Hebei compared with other studies. For NH₃ emissions, the estimates from various studies are generally similar, except that the estimate of Zhou et al. (2015) is
- 10 much higher.

We compare the meteorological parameters simulated by WRFv3.7 with observational data obtained from the National Climatic Data Center (NCDC), where hourly or 3-h observations are available for about 28 sites in the innermost domain. The variables of interest include the temperature at 2 m, wind speed at 10 m, and humidity at 2 m. The statistical indices used include the mean observation (Mean

- 15 OBS), mean simulation (Mean SIM), mean bias, gross error, root mean square error (RMSE), and index of agreement (IOA), the definitions of which are provided in Emery et al. (2001). Table S1 summarizes the model performance statistics as well as the benchmarks suggested by Emery et al. (2001). Obviously almost all indices fall within the benchmark range except that the MB of humidity slightly exceeds the range in July. In summary, the statistics indicate an overall decent performance of meteorological
- 20 predictions.

We summarize the model performance for major air pollutants at each individual site in Beijing (12 sites out of a total of 80 sites in the BTH region) in Table S8-S11. The time series of PM_{2.5} concentration at representative urban sites (Wanshouxigong and Dongsi) and suburban sites (Huairou and Shunyi) is shown in Fig.S7-S8. For the urban sites, the concentrations of PM_{2.5}, SO₂ and NO₂ are

25 much lower with the unit-based inventory than with the proxy-based inventory. For the suburban sites, however, the concentrations are either slightly higher or slightly lower with the unit-based inventory than with the proxy-based inventory. The situation for ozone is quite the opposite. The ozone concentration at urban sites is higher with the unit-based inventory than with the proxy-based inventory.

In suburban sites, it is lower with the unit-based inventory than with the proxy-based inventory. In addition, for the simulations with the unit-based inventory, the NME and MFE are usually lower than those with the proxy-based inventory while the correlation efficient is usually higher, which means that the error is generally smaller and the trend is more similar to the observation when the unit-based

inventory is used. 5

> The figures of time series of $PM_{2.5}$ concentration corroborates the preceding conclusion. At urban sites, the concentration with the unit-based inventory is substantially lower than that with the proxy-based inventory throughout the simulation periods. For suburban sites, the concentration is slightly lower with the unit-based inventory than that with the proxy-based inventory in most of the simulation period.

Reference: 10

Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, X., and Hao, J.: The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020, Sci Total Environ, 580, 197-209, 10.1016/j.scitotenv.2016.11.188, 2017.

Chen, L., Sun, Y., Wu, X., Zhang, Y., Zheng, C., Gao, X., and Cen, K.: Unit-based emission inventory and uncertainty assessment of coal-fired power plants, Atmos Environ, 99, 527-535, 15 10.1016/j.atmosenv.2014.10.023, 2014.

Chen, W., Hong, J., and Xu, C.: Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement, Journal of Cleaner Production, 103, 61-69, 10.1016/j.jclepro.2014.04.048, 2015.

20 Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two texas episodes, Report to the Texas Natural Resources Conservation Commission. (ENVIRON, International Corp, Novato, CA), 2001.

Lei, Y., Zhang, Q., Nielsen, C., and He, K.: An inventory of primary air pollutants and CO2 emissions China, 1990-2020, from cement production in Atmos Environ, 45. 147-154, 10.1016/j.atmosenv.2010.09.034, 2011.

- 25 Li, M., Zhang, Q., Kurokawa, J., Woo, J. H., He, K. B., Lu, Z. F., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y. F., Hong, C. P., Huo, H., Jiang, X. J., Kang, S. C., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos Chem Phys, 17, 935-963, 10.5194/acp-17-935-2017, 2017.
- 30

Liu, F., Zhang, O., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos Chem Phys, 15, 13299-13317, 2015.

Qi, J., Zheng, B., Li, M., Yu, F., Chen, C., Liu, F., Zhou, X., Yuan, J., Zhang, Q., and He, K.: A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China, Atmos Environ, 170, 156-168, 10.1016/j.atmosenv.2017.09.039, 2017.

Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., and Zhou, J.: A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics, Sci Total Environ, 559, 7-14, 10.1016/j.scitotenv.2016.03.125, 2016.

Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X., Xu, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air pollutants in
10 East Asia, Atmos Chem Phys, 14, 6571-6603, 10.5194/acp-14-6571-2014, 2014.

Wu, W., Zhao, B., Wang, S., and Hao, J.: Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China, J Environ Sci (China), 53, 224-237, 10.1016/j.jes.2016.03.025, 2017.

Wu, X., Zhao, L., Zhang, Y., Zheng, C., Gao, X., and Cen, K.: Primary Air Pollutant Emissions and

- Future Prediction of Iron and Steel Industry in China, Aerosol and Air Quality Research, 15, 1422-1432, 10.4209/aaqr.2015.01.0029, 2015.
 Zhao, Y., Wang, S. X., Duan, L., Lei, Y., Cao, P. F., and Hao, J. M.: Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction, Atmos Environ, 42, 8442-8452, 10.1016/j.atmosenv.2008.08.021, 2008.
- 20 Zheng, C. H., Shen, J. L., Zhang, Y. X., Huang, W. W., Zhu, X. B., Wu, X. C., Chen, L. H., Gao, X., and Cen, K. F.: Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection, Atmos Environ, 150, 116-125, 10.1016/j.atmosenv.2016.11.023, 2017.

Zhou, Y., Shuiyuan, C., Lang, J., Chen, D., Zhao, B., Liu, C., Xu, R., and Li, T.: A comprehensive

25 ammonia emission inventory with high-resolution and its evaluation in the Beijing–Tianjin–Hebei (BTH) region, China, Atmos Environ, 106, 305-317, 10.1016/j.atmosenv.2015.01.069, 2015.

Fig.S1. Energy consumption in Jing-Jin-Ji region in 2014.

Fig.S2. NMVOCs speciation by sector according to the Carbon Bond 05 (CB05) gas chemistry scheme. DOSO is domestic solvent 5 use; PRSO is industrial solvent use; INCB is industrial combustion; DOCB is domestic combustion; OPEN is open burning; PROT is industrial process; TRON is on-road transport; TROF is off-road transport; DOTH is other domestic use.

(b)NOx

(c)PM_{2.5}

Fig.S3. Emissions compared with other studies.

Fig.S4. PM_{2.5} speciation profile of major sectors.

Fig.S5. The observational sites in Beijing.

Fig.S6 The observational sites in Tianjin

Fig.S7 The PM2.5 concentration in January in Beijing (The black, green and red lines represent observation, results with proxy-based and unit-based inventories)

Fig.S8 The PM_{2.5} concentration in July in Beijing

cement

	Variable	statistics	Unit	January	July	Benchmark
		Mean OBS	m/s	2.68	2.53	
		Mean SIM	m/s	2.65	2.48	
	Wind Croad	Mean Bias	m/s	-0.03	-0.05	≤±0.5
	wind Speed	Gross Error	m/s	1.2	1.14	≤2
		RMSE	m/s	1.77	1.56	≤2
		IOA		0.71	0.67	≥ 0.6
		Mean OBS	deg	230.79	205.37	
	Wind Direction	Mean SIM	deg	244.79	202.55	
	whice Direction	Mean Bias	deg	3.33	-1.18	≤±10
		Gross Error	deg	41.6	45.93	
		Mean OBS	K	270.30	298.54	
		Mean SIM	Κ	269.87	298.77	
	Temperature	Mean Bias	Κ	-0.43	0.23	≤±0.5
		Gross Error	Κ	1.78	2.04	≤2
		RMSE	Κ	2.28	2.6	
		IOA		0.96	0.94	≥ 0.8
		Mean OBS	g/kg	1.5	14.0	
		Mean SIM	g/kg	1.6	12.9	
	Humidity	Mean Bias	g/kg	0.07	-1.11	<u>≤</u> ±1
	Humany	Gross Error	g/kg	0.31	2.1	≤2
		RMSE	g/kg	0.44	2.7	
		IOA		0.87	0.8	≥0.6
Table S2	2 Proxies used in the proxy-ba	sed inventory for eac	ch sector.			
	Sector	Alloca	te to county		Allocate	to grid
	Power plant, steel,	GDP of sec	condary indu	Population density		

9

Industrial combustion, other industrial process	GDP of secondary industry	Population density
Domestic fuel	Total GDP	Population density
Domestic biomass	GDP of first industry	Population density
Transportation	GDP of tertiary industry	Road
Open burning	GDP of first industry	Population density
Livestock	GDP of first industry	Population density
Fertilizer application	GDP of first industry	Population density
Domestic solvent use	Total GDP	Population density
Industrial solvent use	GDP of secondary industry	Population density

Table S3 Comparison of industrial sectors covered in previous studies and this study (The underlined sectors are newly added to this study).

Study	Sector	Region
Zhao et al. (2008), Chen et al. (2014),	Power plants	China
Liu et al. (2015), Li et al. (2017)	ľ	
Wang et al. (2016), Wu et al. (2015)	Iron plants	China
Lei et al. (2011), Chen et al. (2015)	Cement plants	China
	Power plants, iron plants,	
O_i at al. (2017)	cement factories, coking	ртц
	factories, heating plants, other	DIII
	industries	
	Power plants, iron plants,	
	cement factories, coking	
	factories, <u>nonferrous metals</u> ,	
This study	glass factories, brick factories,	BTH
	lime factories, ceramics	
	factories, refinery factories,	
	chemical plants, industrial	

1 1	
hoi	010
1 16 11 1	
UUI	

Table S4 Types of products used for each sector.

Table S5

Cement

Glass, brick,

lime and ceramics

industries

Industri	ial sector	Product							
Powe	r plant	Use energy consumption to estimate							
Industri	al boiler	Use energy consumption to estimate							
Iron and ste	el production	Pig iron, cru	ude steel, rolled	steel					
Non-ferrous	metal smelter	Alumina,	aluminum, copp	per					
Col	king		Coke						
Cer	nent	Cer	nent, clinker						
Gl	ass		Glass						
Br	rick	Brick							
Li	me	Lime							
Cera	amics	Ceramics							
Ref	inery	Crude oil, ethylene							
Chemical	industries	Ammonia, caustic soda, soda ash, sulfuric acid, nitric acid							
ata source of stack in	formation								
Sector	Stack height	Flue gas temperature	Chimney diameter	Flue gas velocity					
Power plant	Compilation of power industry statistics								
	Emission standar	ď							

of air pollutants for cement industry	National information platform of pollutant discharge permit
Emission standard	

of air pollutants

for industrial kiln

and furnace

Non-ferrous metal smelter, coking, refinery and chemical industries	National information platform of pollutant discharge permit
--	---

Table S6 Vertical distribution of emissions for each industrial sector in the unit-based inventory with plume rise considered

	Sigmo	Level	Power		Iron	Iron plants		Cement		Industrial		Industrial	
Layer	Sigina	height		plants		non plants		plants		boilers		process	
	value	(m)	Jan	Jul	Jan	Jul	Jan	Jul	Jan	Jul	Jan	Jul	
1	0.995	35	0%	0%	0%	0%	3%	3%	3%	4%	3%	6%	
2	0.99	85	0%	0%	0%	0%	9%	11%	21%	21%	28%	31%	
3	0.98	140	0%	0%	0%	6%	26%	32%	32%	41%	45%	36%	
4	0.96	210	6%	9%	60%	85%	49%	49%	39%	31%	20%	24%	
5	0.94	310	15%	17%	38%	9%	13%	5%	5%	2%	3%	3%	
6	0.91	440	47%	45%	2%	0%	1%	0%	0%	0%	0%	0%	
7	0.86	610	31%	29%	0%	0%	0%	0%	0%	0%	0%	0%	

Table S7 Vertical distribution of emissions for each industrial sector in the proxy-based inventory

Lo	wor	Sigma	Level	Power	Iron	Cement	Industrial	Industrial
La	iyei	value	height (m)	plants	plants	plants	boilers	process
	1	0.995	35	0%	6%	6%	50%	6%
	2	0.99	85	10%	26%	26%	30%	26%
	3	0.98	140	10%	68%	68%	20%	68%
	4	0.96	210	30%	0%	0%	0%	0%
	5	0.94	310	20%	0%	0%	0%	0%
	6	0.91	440	20%	0%	0%	0%	0%
	7	0.86	610	10%	0%	0%	0%	0%

5

		Co	ncentration	L	NM	1B	NM	ſE	MF	FB	MF	FΕ	R	
Months	Sites	proxy-	unit-	ODC	proxy-	unit-								
		based	based	OP2	based	based								
	Wanshouxigong	111.2	88.0	108.4	3%	-19%	54%	49%	20%	-3%	62%	60%	0.58	0.60
	Dingling Tomb	36.8	36.9	69.3	-47%	-47%	54%	53%	-59%	-55%	72%	68%	0.67	0.68
	Dongsi	112.2	91.6	104.1	8%	-12%	58%	51%	24%	6%	64%	61%	0.55	0.56
	Heaven Temple	110.7	90.3	97.6	13%	-8%	58%	51%	31%	10%	64%	61%	0.59	0.60
	Nongzhanguan	92.6	77.7	101.9	-9%	-24%	52%	50%	4%	-10%	59%	58%	0.57	0.59
Ion	Guanyuan	110.5	86.4	100.6	10%	-14%	60%	51%	23%	1%	65%	61%	0.55	0.56
Jan	Haidian	86.8	70.0	109.3	-21%	-36%	55%	53%	-17%	-35%	66%	67%	0.53	0.54
	Shunyi	89.4	83.3	92.3	-3%	-10%	56%	54%	8%	3%	62%	61%	0.55	0.55
	Huairou	49.8	48.5	86.9	-43%	-44%	57%	55%	-71%	-69%	86%	82%	0.61	0.62
	Changping	74.7	70.3	85.6	-13%	-18%	54%	51%	-4%	-8%	58%	56%	0.57	0.58
	Olympic center	93.6	82.5	94.8	-1%	-13%	56%	50%	9%	1%	62%	59%	0.57	0.59
	Gucheng	77.0	63.2	102.0	-25%	-38%	50%	51%	-19%	-37%	60%	64%	0.59	0.60
	Wanshouxigong	55.7	50.0	96.4	-42%	-48%	55%	58%	-51%	-61%	69%	75%	0.53	0.52
	Dingling Tomb	24.6	26.1	83.7	-71%	-69%	74%	72%	-106%	-102%	112%	109%	0.55	0.57
	Dongsi	57.3	52.2	110.0	-48%	-53%	57%	59%	-54%	-61%	72%	75%	0.56	0.55
	Heaven Temple	58.0	52.5	103.3	-44%	-49%	56%	58%	-52%	-61%	70%	74%	0.51	0.50
	Nongzhanguan	54.4	50.2	91.7	-41%	-45%	54%	55%	-54%	-59%	70%	72%	0.50	0.50
T1	Guanyuan	54.8	49.8	99.6	-45%	-50%	55%	57%	-59%	-67%	73%	78%	0.56	0.56
Jui	Haidian	42.8	39.9	99.8	-57%	-60%	61%	63%	-88%	-91%	93%	95%	0.60	0.60
	Shunyi	60.2	55.8	101.7	-41%	-45%	54%	55%	-41%	-47%	67%	70%	0.58	0.57
	Huairou	44.8	45.0	101.2	-56%	-56%	60%	59%	-89%	-78%	96%	85%	0.68	0.68
	Changping	37.2	39.0	91.9	-60%	-58%	65%	63%	-77%	-74%	86%	84%	0.65	0.67
	Olympic center	50.5	47.1	104.8	-52%	-55%	57%	59%	-73%	-77%	81%	83%	0.60	0.59
	Gucheng	38.2	36.9	97.2	-61%	-62%	63%	64%	-96%	-98%	99%	100%	0.64	0.63

Table S8 The statistics for model performance of PM_{2.5} with proxy-based and unit-based inventories

		Co	ncentratior	1	NM	1B	NM	1E	MI	FB	MI	FE	R	
Months	Sites	proxy-	unit-	ODC	proxy-	unit-								
		based	based	OB2	based	based								
	Wanshouxigong	135.3	96.0	81.1	67%	18%	81%	47%	43%	11%	59%	46%	0.60	0.64
	Dingling Tomb	39.9	41.4	37.2	7%	11%	60%	58%	4%	11%	60%	60%	0.64	0.66
	Dongsi	135.1	101.4	66.3	104%	53%	116%	75%	59%	37%	72%	60%	0.43	0.42
	Heaven Temple	134.9	101.8	73.4	84%	39%	94%	61%	48%	21%	60%	50%	0.57	0.58
	Nongzhanguan	108.0	93.9	68.0	59%	38%	79%	59%	33%	26%	58%	51%	0.60	0.63
Lon	Guanyuan	141.7	99.9	76.1	86%	31%	103%	61%	42%	12%	63%	52%	0.59	0.59
Jan	Haidian	106.1	80.0	93.5	13%	-14%	66%	50%	-12%	-32%	62%	60%	0.47	0.48
	Shunyi	100.7	92.7	56.8	77%	63%	93%	80%	42%	37%	62%	58%	0.61	0.61
	Huairou	54.8	54.0	56.7	-3%	-5%	72%	68%	-45%	-41%	85%	81%	0.55	0.57
	Changping	102.3	95.3	57.0	80%	67%	98%	87%	39%	34%	60%	57%	0.54	0.56
	Olympic center	113.9	100.0	67.7	68%	48%	86%	66%	43%	37%	63%	58%	0.60	0.62
	Gucheng	95.0	73.6	75.9	25%	-3%	61%	46%	12%	-9%	55%	52%	0.61	0.64
	Wanshouxigong	22.1	18.4	41.3	-46%	-56%	59%	62%	-72%	-86%	83%	92%	0.17	0.15
	Dingling Tomb	5.7	7.2	17.1	-67%	-58%	70%	63%	-116%	-102%	118%	106%	0.34	0.37
	Dongsi	25.6	22.6	43.5	-41%	-48%	57%	58%	-65%	-72%	78%	81%	0.22	0.19
	Heaven Temple	24.5	21.0	36.4	-33%	-42%	56%	56%	-53%	-63%	73%	77%	0.24	0.21
	Nongzhanguan	22.8	21.7	44.9	-49%	-52%	60%	60%	-78%	-77%	87%	84%	0.27	0.27
T.1	Guanyuan	21.4	18.1	42.2	-49%	-57%	61%	62%	-75%	-87%	86%	93%	0.11	0.12
Jui	Haidian	14.9	13.7	54.3	-73%	-75%	74%	76%	-119%	-123%	121%	124%	0.07	0.09
	Shunyi	21.6	19.7	28.1	-23%	-30%	39%	41%	-36%	-43%	54%	57%	0.66	0.64
	Huairou	11.9	12.8	25.0	-52%	-49%	62%	60%	-96%	-86%	105%	95%	0.39	0.40
	Changping	15.1	17.1	32.5	-53%	-47%	58%	54%	-85%	-75%	90%	81%	0.27	0.28
	Olympic center	20.1	18.5	48.6	-59%	-62%	64%	64%	-93%	-96%	97%	99%	0.23	0.25
	Gucheng	12.4	12.2	45.6	-73%	-73%	74%	74%	-118%	-118%	119%	118%	0.23	0.24

Table S9 The statistics for model performance of NO₂ with proxy-based and unit-based inventories

Months	Sites	Concentration			NMB		NME		MFB		MFE		R	
		proxy-	unit-	ODC	proxy-	unit-								
		based	based	ODS	based	based								
Jan	Wanshouxigong	102.2	93.4	62.0	65%	51%	77%	67%	60%	51%	69%	65%	0.51	0.51
	Dingling Tomb	36.0	36.7	35.4	2%	3%	73%	71%	-9%	-4%	70%	69%	0.43	0.44
	Dongsi	99.8	91.8	56.7	76%	62%	86%	75%	64%	57%	72%	67%	0.52	0.53
	Heaven Temple	99.7	92.0	47.1	112%	95%	124%	112%	81%	74%	88%	84%	0.30	0.30
	Nongzhanguan	88.0	82.7	58.9	50%	40%	69%	62%	49%	45%	64%	61%	0.50	0.52
	Guanyuan	101.2	91.6	54.8	85%	67%	97%	84%	67%	58%	77%	72%	0.51	0.51
	Haidian	89.7	81.7	58.2	54%	40%	81%	73%	48%	40%	72%	70%	0.47	0.46
	Shunyi	68.9	66.1	44.0	57%	50%	79%	75%	56%	53%	73%	71%	0.48	0.47
	Huairou	46.3	46.5	45.6	2%	2%	66%	63%	-8%	-4%	74%	71%	0.40	0.40
	Changping	66.3	64.0	57.6	15%	11%	58%	56%	12%	8%	56%	56%	0.46	0.46
	Olympic center	87.2	82.6	58.3	50%	42%	72%	66%	45%	42%	65%	62%	0.50	0.50
	Gucheng	80.6	72.4	52.9	52%	37%	79%	69%	47%	38%	71%	66%	0.52	0.52
Jul	Wanshouxigong	69.9	66.5	5.6	1144%	1083%	1168%	1110%	149%	145%	156%	153%	-0.31	-0.31
	Dingling Tomb	9.7	10.5	4.6	112%	128%	168%	178%	52%	58%	97%	98%	0.12	0.11
	Dongsi	74.6	71.8	9.6	680%	650%	696%	669%	135%	133%	141%	141%	-0.05	-0.06
	Heaven Temple	67.3	64.0	7.4	805%	762%	831%	790%	136%	133%	146%	144%	-0.27	-0.28
	Nongzhanguan	62.9	61.0	8.7	622%	600%	649%	627%	127%	128%	137%	138%	-0.07	-0.08
	Guanyuan	77.0	73.5	8.5	802%	761%	842%	802%	149%	147%	155%	153%	0.04	0.04
	Haidian	62.5	60.2	12.2	413%	394%	444%	424%	96%	95%	122%	120%	-0.26	-0.26
	Shunyi	36.8	33.5	6.5	463%	412%	498%	454%	112%	106%	130%	128%	-0.13	-0.15
	Huairou	22.9	23.7	4.5	405%	422%	435%	451%	112%	119%	126%	129%	-0.01	-0.02
	Changping	28.2	30.6	5.4	421%	466%	457%	493%	114%	122%	127%	133%	-0.06	-0.02
	Olympic center	64.2	61.8	5.0	1174%	1127%	1193%	1147%	141%	140%	149%	149%	-0.09	-0.08
	Gucheng	44.1	43.0	5.2	741%	720%	767%	744%	128%	128%	140%	139%	-0.19	-0.17

Table S10 The statistics for model performance of SO₂ with proxy-based and unit-based inventories in January

Months	Sites	Concentration			NMB		NME		MFB		MFE		R	
		proxy-	unit-	unit- based OBS	proxy-	unit-								
		based	based		based	based								
Jan	Wanshouxigong	11.0	14.0	12.0	-8%	17%	100%	115%	-86%	-71%	153%	149%	0.43	0.40
	Dingling Tomb	47.2	46.4	35.4	33%	31%	56%	54%	20%	21%	80%	78%	0.60	0.61
	Dongsi	12.0	14.7	23.3	-49%	-37%	71%	75%	-116%	-106%	139%	137%	0.50	0.44
	Heaven Temple	11.5	14.2	20.8	-45%	-32%	76%	82%	-108%	-97%	144%	143%	0.46	0.41
	Nongzhanguan	15.9	17.5	20.9	-24%	-16%	67%	69%	-87%	-80%	128%	127%	0.61	0.59
	Guanyuan	12.6	16.1	16.0	-21%	1%	82%	94%	-78%	-62%	144%	142%	0.50	0.43
	Haidian	18.3	22.8	14.9	23%	54%	99%	122%	-48%	-34%	139%	138%	0.53	0.42
	Shunyi	20.4	21.3	22.9	-11%	-7%	57%	57%	-66%	-59%	116%	113%	0.71	0.70
	Huairou	40.8	40.2	26.2	56%	53%	87%	86%	13%	13%	101%	100%	0.53	0.52
	Changping	26.9	28.1	25.9	4%	9%	55%	55%	-34%	-28%	90%	89%	0.65	0.65
	Olympic center	17.2	18.5	15.6	10%	18%	84%	92%	-50%	-47%	136%	136%	0.58	0.52
	Gucheng	20.6	25.1	31.5	-35%	-20%	64%	65%	-84%	-64%	112%	105%	0.51	0.47
Jul	Wanshouxigong	57.8	58.5	104.8	-45%	-44%	55%	55%	-89%	-86%	104%	102%	0.63	0.62
	Dingling Tomb	106.6	107.4	115.2	-7%	-7%	40%	38%	1%	1%	40%	39%	0.49	0.56
	Dongsi	55.1	55.5	92.8	-41%	-40%	57%	57%	-82%	-80%	104%	102%	0.55	0.54
	Heaven Temple	58.6	59.0	101.3	-42%	-42%	55%	55%	-82%	-78%	102%	99%	0.63	0.61
	Nongzhanguan	63.4	63.1	107.0	-41%	-41%	57%	57%	-58%	-57%	99%	98%	0.56	0.56
	Guanyuan	56.5	57.3	98.7	-43%	-42%	61%	61%	-79%	-77%	107%	105%	0.52	0.52
	Haidian	68.5	69.3	83.4	-18%	-17%	58%	57%	-28%	-26%	93%	92%	0.54	0.55
	Shunyi	70.2	71.2	101.9	-31%	-30%	44%	44%	-37%	-33%	63%	61%	0.70	0.69
	Huairou	92.8	91.1	112.0	-17%	-19%	41%	41%	-12%	-14%	46%	46%	0.54	0.54
	Changping	91.4	90.1	115.3	-21%	-22%	44%	42%	-17%	-18%	52%	51%	0.51	0.55
	Olympic center	64.3	64.7	90.3	-29%	-28%	59%	59%	-45%	-43%	99%	97%	0.52	0.52
	Gucheng	80.5	80.4	100.4	-20%	-20%	51%	50%	-15%	-15%	73%	72%	0.58	0.59

Table S11 The statistics for model performance of ozone with proxy-based and unit-based inventories