Articles | Volume 19, issue 5
Atmos. Chem. Phys., 19, 3417–3432, 2019
Atmos. Chem. Phys., 19, 3417–3432, 2019

Research article 18 Mar 2019

Research article | 18 Mar 2019

The importance of interactive chemistry for stratosphere–troposphere coupling

Sabine Haase and Katja Matthes

Related authors

Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061,,, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
The Brewer–Dobson circulation in CMIP6
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591,,, 2021
Short summary
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442,,, 2021
Short summary
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857,,, 2021
Short summary
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635,,, 2021
Short summary
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544,,, 2021
Short summary

Cited articles

Albers, J. R. and Nathan, T. R.: Pathways for Communicating the Effects of Stratospheric Ozone to the Polar Vortex: Role of Zonally Asymmetric Ozone, J. Atmos. Sci., 69, 785–801,, 2012. a
Ambaum, M. H. P. and Hoskins, B. J.: The NAO troposphere-stratosphere connection, J. Climate, 15, 1969–1978,<1969:TNTSC>2.0.CO;2, 2002. a
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic Press, San Diego, California, 1987. a, b
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584,, 2001. a, b
Baldwin, M. P., Stephenson, D. B., Thompson, D. W. J., Dunkerton, T. J., Charlton, A. J., and O'Neill, A.: Stratospheric memory and skill of extended-range weather forecasts, Science, 301, 636–640,, 2003. a
Short summary
The Antarctic ozone hole influences surface climate in the Southern Hemisphere. Recent studies have shown that stratospheric ozone depletion in the Arctic can also affect the surface. We evaluate the importance of the direct and indirect representation of ozone variability in a climate model for this surface response. We show that allowing feedbacks between ozone chemistry, radiation, and dynamics enhances and prolongs the surface response to Northern Hemisphere spring ozone depletion.
Final-revised paper