Articles | Volume 19, issue 4
https://doi.org/10.5194/acp-19-2687-2019
https://doi.org/10.5194/acp-19-2687-2019
Research article
 | 
01 Mar 2019
Research article |  | 01 Mar 2019

Enhancement of secondary organic aerosol formation and its oxidation state by SO2 during photooxidation of 2-methoxyphenol

Changgeng Liu, Tianzeng Chen, Yongchun Liu, Jun Liu, Hong He, and Peng Zhang

Related authors

Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO2 and NH3
Tianzeng Chen, Yongchun Liu, Qingxin Ma, Biwu Chu, Peng Zhang, Changgeng Liu, Jun Liu, and Hong He
Atmos. Chem. Phys., 19, 8063–8081, https://doi.org/10.5194/acp-19-8063-2019,https://doi.org/10.5194/acp-19-8063-2019, 2019
Short summary
Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals
Changgeng Liu, Yongchun Liu, Tianzeng Chen, Jun Liu, and Hong He
Atmos. Chem. Phys., 19, 2001–2013, https://doi.org/10.5194/acp-19-2001-2019,https://doi.org/10.5194/acp-19-2001-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The role of surface-active macromolecules in the ice-nucleating ability of lignin, Snomax, and agricultural soil extracts
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025,https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025,https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025,https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing
Rhianna L. Evans, Daniel J. Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor E. Oghama, Gordon McFiggans, Jacqueline F. Hamilton, and Andrew R. Rickard
Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025,https://doi.org/10.5194/acp-25-4367-2025, 2025
Short summary
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary

Cited articles

Ahmad, W., Coeur, C., Tomas, A., Fagniez, T., Brubach, J.-B., and Cuisset, A.: Infrared spectroscopy of secondary organic aerosol precursors and investigation of the hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol, Appl. Opt., 56, E116–E122, https://doi.org/10.1364/ao.56.00e116, 2017. 
Bari, M. A. and Kindzierski, W. B.: Fine particulate matter (PM2.5) in Edmonton, Canada: Source apportionment and potential risk for human health, Environ. Pollut., 218, 219–229, https://doi.org/10.1016/j.envpol.2016.06.014, 2016. 
Cao, G. and Jang, M.: Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx, Atmos. Environ., 41, 7603–7613, https://doi.org/10.1016/j.atmosenv.2007.05.034, 2007. 
Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin S. T.: Particle-phase chemistry of secondary organic material: Modeled compared to measured O:C and H:C elemental ratios provide constraints, Environ. Sci. Technol., 45, 4763–4770, https://doi.org/10.1021/es104398s, 2011. 
Chen, T., Liu, Y., Chu, B., Liu, C., Liu, J., Ge, Y., Ma, Q., Ma, J., and He, H.: Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations, J. Environ. Sci., 79, 256–263, https://doi.org/10.1016/j.jes.2018.11.011, 2019. 
Download
Short summary
The effect of SO2 at atmospheric levels on SOA formation and its oxidation state during 2-methoxyphenol photooxidation was investigated with various inorganic seed particles. The presence of SO2 increased SOA yield and oxidation state, suggesting that the functionalization reaction should be more dominant than the oligomerization reaction. SO2 and seed particles were found to have a synergetic contribution to SOA formation. The results demonstrate the important role of SO2 in SOA formation.
Share
Altmetrics
Final-revised paper
Preprint