Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 1241–1261, 2019
https://doi.org/10.5194/acp-19-1241-2019
Atmos. Chem. Phys., 19, 1241–1261, 2019
https://doi.org/10.5194/acp-19-1241-2019

Research article 31 Jan 2019

Research article | 31 Jan 2019

Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model

Youngseob Kim et al.

Related authors

Simulation of O3 and NOx in São Paulo street urban canyons with VEIN (v0.2.2) and MUNICH (v1.0)
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021,https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Nonstationary modeling of NO2, NO and NOx in Paris using the Street-in-Grid model: coupling local and regional scales with a two-way dynamic approach
Lya Lugon, Karine Sartelet, Youngseob Kim, Jérémy Vigneron, and Olivier Chrétien
Atmos. Chem. Phys., 20, 7717–7740, https://doi.org/10.5194/acp-20-7717-2020,https://doi.org/10.5194/acp-20-7717-2020, 2020
Short summary
Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019,https://doi.org/10.5194/acp-19-5543-2019, 2019
Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models
Marwa Majdi, Solene Turquety, Karine Sartelet, Carole Legorgeu, Laurent Menut, and Youngseob Kim
Atmos. Chem. Phys., 19, 785–812, https://doi.org/10.5194/acp-19-785-2019,https://doi.org/10.5194/acp-19-785-2019, 2019
Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)
Youngseob Kim, You Wu, Christian Seigneur, and Yelva Roustan
Geosci. Model Dev., 11, 611–629, https://doi.org/10.5194/gmd-11-611-2018,https://doi.org/10.5194/gmd-11-611-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Hyperfine-resolution mapping of on-road vehicle emissions with comprehensive traffic monitoring and an intelligent transportation system
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021,https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape
Akinori Ito, Adeyemi A. Adebiyi, Yue Huang, and Jasper F. Kok
Atmos. Chem. Phys., 21, 16869–16891, https://doi.org/10.5194/acp-21-16869-2021,https://doi.org/10.5194/acp-21-16869-2021, 2021
Short summary
Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan
Chuan-Yao Lin, Yang-Fan Sheng, Wan-Chin Chen, Charles C. K. Chou, Yi-Yun Chien, and Wen-Mei Chen
Atmos. Chem. Phys., 21, 16893–16910, https://doi.org/10.5194/acp-21-16893-2021,https://doi.org/10.5194/acp-21-16893-2021, 2021
Short summary
Impact of modified turbulent diffusion of PM2.5 aerosol in WRF-Chem simulations in eastern China
Wenxing Jia and Xiaoye Zhang
Atmos. Chem. Phys., 21, 16827–16841, https://doi.org/10.5194/acp-21-16827-2021,https://doi.org/10.5194/acp-21-16827-2021, 2021
Short summary
What rainfall rates are most important to wet removal of different aerosol types?
Yong Wang, Wenwen Xia, and Guang J. Zhang
Atmos. Chem. Phys., 21, 16797–16816, https://doi.org/10.5194/acp-21-16797-2021,https://doi.org/10.5194/acp-21-16797-2021, 2021
Short summary

Cited articles

Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.: Experimental determination of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991, https://doi.org/10.1039/C2CP44013J, 2013. a, b
Boucher, O.: Atmospheric Aerosols, Properties and Climate Impact, Springer-Netherlands, https://doi.org/10.1007/978-94-017-9649-1, 2015. a
Bowman, F. M., Odum, J. R., Seinfeld, J. H., and Pandis, S. N.: Mathematical model for gas-particle partitioning of secondary organic aerosols, Atmos. Environ., 31, 3921–3931, https://doi.org/10.1016/S1352-2310(97)00245-8, 1997. a
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006. a, b
Capaldo, K. P., Pilinis, C., and Pandis, S. N.: A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617–3627, https://doi.org/10.1016/S1352-2310(00)00092-3, 2000. a
Download
Short summary
Assumptions (ideality and thermodynamic equilibrium) commonly made in 3-dimensional air quality models were reconsidered to evaluate their impacts on secondary organic aerosol (SOA) formation. Non-ideality (short-, medium- and long-range interactions of organics and inorganics) influences SOA concentrations by about 30 % over Europe. If SOA are highly viscous rather than inviscid, hydrophobic SOA concentrations increase by 6 % but can increase by an order of magnitude for volatile compounds.
Altmetrics
Final-revised paper
Preprint