Articles | Volume 19, issue 15
Atmos. Chem. Phys., 19, 10423–10432, 2019
https://doi.org/10.5194/acp-19-10423-2019

Special issue: Interactions between aerosols and the South West Asian...

Atmos. Chem. Phys., 19, 10423–10432, 2019
https://doi.org/10.5194/acp-19-10423-2019

Research article 15 Aug 2019

Research article | 15 Aug 2019

Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements

Kadiri Saikranthi et al.

Related authors

Is the Atlantic Ocean driving the recent variability in South Asian dust?
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1305,https://doi.org/10.5194/acp-2020-1305, 2021
Preprint under review for ACP
Short summary
Measurement report: Altitudinal variation of CCN activation across the Indo-Gangetic Plains prior to monsoon onset and during peak monsoon periods: Results from the SWAAMI field campaign
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1233,https://doi.org/10.5194/acp-2020-1233, 2020
Revised manuscript accepted for ACP
Short summary
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 2: Clear-sky direct shortwave radiative forcing using multi-year assimilated data over the Indian subcontinent
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020,https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Ravi Shankar Nanjundiah, Krishnaswamy Krishna Moorthy, Sivaramakrishnan Lakshmivarahan, and Surendran Nair Suresh Babu
Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019,https://doi.org/10.5194/acp-19-11865-2019, 2019
Short summary
Simulations of black carbon over the Indian region: improvements and implications of diurnality in emissions
Gaurav Govardhan, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Nanjundiah
Atmos. Chem. Phys., 19, 8229–8241, https://doi.org/10.5194/acp-19-8229-2019,https://doi.org/10.5194/acp-19-8229-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021,https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021,https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021,https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021,https://doi.org/10.5194/acp-21-4149-2021, 2021
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021,https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 
Awaka, J., Iguchi, T., and Okamoto, K.: TRMM PR standard algorithm 2A23 and its performance on bright band detection, J. Meteorol. Soc. Jpn., 87A, 31–52, 2009. 
Cao, Q., Hong, Y., Gourley, J. J., Qi, Y., Zhang, J., Wen, Y., and Kirstetter, P. E.: Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of space borne observations from TRMM precipitation radar, J. Appl. Meteorol. Climatol., 52, 408–424, 2013. 
Chaudhari, H. S., Pokhrel, S., Mohanty, S., and Saha, S. K.: Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model, Theor. Appl. Climatol., 114, 459–477, https://doi.org/10.1007/s00704-013-0854-8, 2013. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Recent studies have shown that simulation of monsoons can be improved with an exact representation of SST–precipitation relationship. The vertical structure of precipitation with SST is distinctly different over the Arabian Sea than over the Bay of Bengal. The reflectivity profiles show variation with SST over the Arabian Sea and do not show considerable variation with SST over the Bay of Bengal. The variations in reflectivity profiles seem to originate at the cloud formation stage itself.
Altmetrics
Final-revised paper
Preprint