Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 18, issue 8
Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Apr 2018

Research article | 24 Apr 2018

Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

Yiqiu Ma et al.

Related authors

Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and formation mechanisms
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-784,https://doi.org/10.5194/acp-2020-784, 2020
Preprint under review for ACP
Short summary
Tracking separate contributions of diesel and gasoline vehicles to roadside PM2.5 through online monitoring of volatile organic compounds and PM2.5 organic and elemental carbon: a 6-year study in Hong Kong
Yee Ka Wong, X. H. Hilda Huang, Peter K. K. Louie, Alfred L. C. Yu, Damgy H. L. Chan, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020,https://doi.org/10.5194/acp-20-9871-2020, 2020
Short summary
Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere
Yibei Wan, Xiangpeng Huang, Bin Jiang, Binyu Kuang, Manfei Lin, Deming Xia, Yuhong Liao, Jingwen Chen, Jian Zhen Yu, and Huan Yu
Atmos. Chem. Phys., 20, 9821–9835, https://doi.org/10.5194/acp-20-9821-2020,https://doi.org/10.5194/acp-20-9821-2020, 2020
Short summary
Simultaneous measurements of urban and rural particles in Beijing – Part 2: Case studies of haze events and regional transport
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020,https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon and monsoon seasons?
Tiantian Wang, Yu Song, Zhenying Xu, Mingxu Liu, Tingting Xu, Wenling Liao, Lifei Yin, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 20, 8727–8736, https://doi.org/10.5194/acp-20-8727-2020,https://doi.org/10.5194/acp-20-8727-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside and suburban monitoring of submicron aerosols
Chunshui Lin, Darius Ceburnis, Wei Xu, Eimear Heffernan, Stig Hellebust, John Gallagher, Ru-Jin Huang, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 20, 10513–10529, https://doi.org/10.5194/acp-20-10513-2020,https://doi.org/10.5194/acp-20-10513-2020, 2020
Short summary
Vertical distribution of particle-phase dicarboxylic acids, oxoacids and α-dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020,https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Characterization and source apportionment of aerosol light scattering in a typical polluted city in the Yangtze River Delta, China
Dong Chen, Yu Zhao, Jie Zhang, Huan Yu, and Xingna Yu
Atmos. Chem. Phys., 20, 10193–10210, https://doi.org/10.5194/acp-20-10193-2020,https://doi.org/10.5194/acp-20-10193-2020, 2020
Short summary
Molecular insights into new particle formation in Barcelona, Spain
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020,https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Tracking separate contributions of diesel and gasoline vehicles to roadside PM2.5 through online monitoring of volatile organic compounds and PM2.5 organic and elemental carbon: a 6-year study in Hong Kong
Yee Ka Wong, X. H. Hilda Huang, Peter K. K. Louie, Alfred L. C. Yu, Damgy H. L. Chan, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020,https://doi.org/10.5194/acp-20-9871-2020, 2020
Short summary

Cited articles

Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., and Russell, A. G.: Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects, Environ. Sci. Technol., 49, 13605–13612, https://doi.org/10.1021/acs.est.5b02967, 2015. 
Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., and Huang, Y. C. T.: Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress, Environ. Health Persp., 113, 1032–1038, http://dx.doi.org/10.1289%2Fehp.7996, 2005. 
Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321–9333, https://doi.org/10.5194/acp-12-9321-2012, 2012. 
Chen, X., Hopke, P. K., and Carter, W. P. L.: Secondary organic aerosol from Oozonolysis of biogenic volatile organic compounds: Chamber studies of particle and reactive oxygen species formation, Environ. Sci. Technol., 45, 276–282, https://doi.org/10.1021/es102166c, 2011. 
Cheng, C., Wang, G., Zhou, B., Meng, J., Li, J., Cao, J., and Xiao, S.: Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods, Atmos. Environ., 81, 443–449, https://doi.org/10.1016/j.atmosenv.2013.09.013, 2013. 
Publications Copernicus
Download
Short summary
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their redox activity. In this study, we measured HULISWS and associated redox activity in PM2.5 sampled during a 1-year period in Beijing and investigated their sources. We found biomass burning and secondary aerosol formation were the major contributors (> 59 %) to both HULISWS and redox activity, and the combustion-related primary sources accounted for > 70 % of HULISWS and redox activity.
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their...
Citation
Altmetrics
Final-revised paper
Preprint