Articles | Volume 18, issue 8
Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018
Research article
24 Apr 2018
Research article | 24 Apr 2018

Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

Yiqiu Ma et al.

Related authors

A dynamic ammonia emission model and the online coupling with WRF-Chem (WRF-SoilN-Chem v1.0): development and evaluation
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-231,https://doi.org/10.5194/gmd-2022-231, 2022
Preprint under review for GMD
Short summary
Measurement report: The 10-year trend of PM2.5 major components and source tracers from 2008 to 2017 in an urban site of Hong Kong, China
Wing Sze Chow, Kezheng Liao, X. H. Hilda Huang, Ka Fung Leung, Alexis K. H. Lau, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022,https://doi.org/10.5194/acp-22-11557-2022, 2022
Short summary
Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022,https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Characteristics and degradation of organic aerosols from cooking sources based on hourly observation of organic molecular markers in urban environment
Rui Li, Kun Zhang, Qing Li, Liumei Yang, Shunyao Wang, Zhiqiang Liu, Xiaojuan Zhang, Hui Chen, Yanan Yi, Jialiang Feng, Qiongqiong Wang, Ling Huang, Wu Wang, Yangjun Wang, Jian Zhen Yu, and Li Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-586,https://doi.org/10.5194/acp-2022-586, 2022
Preprint under review for ACP
Short summary
Chemical evolution of secondary organic aerosol tracers during high-PM2.5 episodes at a suburban site in Hong Kong over 4 months of continuous measurement
Qiongqiong Wang, Shan Wang, Yuk Ying Cheng, Hanzhe Chen, Zijing Zhang, Jinjian Li, Dasa Gu, Zhe Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11239–11253, https://doi.org/10.5194/acp-22-11239-2022,https://doi.org/10.5194/acp-22-11239-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Examination of brown carbon absorption from wildfires in the western US during the WE-CAN study
Amy P. Sullivan, Rudra P. Pokhrel, Yingjie Shen, Shane M. Murphy, Darin W. Toohey, Teresa Campos, Jakob Lindaas, Emily V. Fischer, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 22, 13389–13406, https://doi.org/10.5194/acp-22-13389-2022,https://doi.org/10.5194/acp-22-13389-2022, 2022
Short summary
Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
Ting-Yu Chen, Chia-Li Chen, Yi-Chi Chen, Charles C.-K. Chou, Haojia Ren, and Hui-Ming Hung
Atmos. Chem. Phys., 22, 13001–13012, https://doi.org/10.5194/acp-22-13001-2022,https://doi.org/10.5194/acp-22-13001-2022, 2022
Short summary
Measurement report: Characterisation and sources of the secondary organic carbon in a Chinese megacity over 5 years from 2016 to 2020
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022,https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Exploring the inorganic composition of the Asian Tropopause Aerosol Layer using medium-duration balloon flights
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022,https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Technical note: Use of PM2.5 to CO ratio as an indicator of wildfire smoke in urban areas
Daniel A. Jaffe, Brendan Schnieder, and Daniel Inouye
Atmos. Chem. Phys., 22, 12695–12704, https://doi.org/10.5194/acp-22-12695-2022,https://doi.org/10.5194/acp-22-12695-2022, 2022
Short summary

Cited articles

Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., and Russell, A. G.: Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects, Environ. Sci. Technol., 49, 13605–13612, https://doi.org/10.1021/acs.est.5b02967, 2015. 
Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., and Huang, Y. C. T.: Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress, Environ. Health Persp., 113, 1032–1038, http://dx.doi.org/10.1289%2Fehp.7996, 2005. 
Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321–9333, https://doi.org/10.5194/acp-12-9321-2012, 2012. 
Chen, X., Hopke, P. K., and Carter, W. P. L.: Secondary organic aerosol from Oozonolysis of biogenic volatile organic compounds: Chamber studies of particle and reactive oxygen species formation, Environ. Sci. Technol., 45, 276–282, https://doi.org/10.1021/es102166c, 2011. 
Cheng, C., Wang, G., Zhou, B., Meng, J., Li, J., Cao, J., and Xiao, S.: Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods, Atmos. Environ., 81, 443–449, https://doi.org/10.1016/j.atmosenv.2013.09.013, 2013. 
Download
Short summary
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their redox activity. In this study, we measured HULISWS and associated redox activity in PM2.5 sampled during a 1-year period in Beijing and investigated their sources. We found biomass burning and secondary aerosol formation were the major contributors (> 59 %) to both HULISWS and redox activity, and the combustion-related primary sources accounted for > 70 % of HULISWS and redox activity.
Altmetrics
Final-revised paper
Preprint