Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 18, issue 8
Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 18, 5607–5617, 2018
https://doi.org/10.5194/acp-18-5607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Apr 2018

Research article | 24 Apr 2018

Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

Yiqiu Ma et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (12 Mar 2018)  Author's response
ED: Publish subject to minor revisions (review by editor) (22 Mar 2018) by Dwayne Heard
AR by Xinghua Qiu on behalf of the Authors (26 Mar 2018)  Author's response    Manuscript
ED: Publish as is (26 Mar 2018) by Dwayne Heard
AR by Xinghua Qiu on behalf of the Authors (02 Apr 2018)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their redox activity. In this study, we measured HULISWS and associated redox activity in PM2.5 sampled during a 1-year period in Beijing and investigated their sources. We found biomass burning and secondary aerosol formation were the major contributors (> 59 %) to both HULISWS and redox activity, and the combustion-related primary sources accounted for > 70 % of HULISWS and redox activity.
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their...
Citation
Altmetrics
Final-revised paper
Preprint