Articles | Volume 18, issue 3
Atmos. Chem. Phys., 18, 1729–1743, 2018
https://doi.org/10.5194/acp-18-1729-2018
Atmos. Chem. Phys., 18, 1729–1743, 2018
https://doi.org/10.5194/acp-18-1729-2018

Research article 06 Feb 2018

Research article | 06 Feb 2018

Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

Li-Ming Cao et al.

Related authors

Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2)
Qiao Zhu, Xiao-Feng Huang, Li-Ming Cao, Lin-Tong Wei, Bin Zhang, Ling-Yan He, Miriam Elser, Francesco Canonaco, Jay G. Slowik, Carlo Bozzetti, Imad El-Haddad, and André S. H. Prévôt
Atmos. Meas. Tech., 11, 1049–1060, https://doi.org/10.5194/amt-11-1049-2018,https://doi.org/10.5194/amt-11-1049-2018, 2018
Short summary
Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival
Chuan Wang, Xiao-Feng Huang, Qiao Zhu, Li-Ming Cao, Bin Zhang, and Ling-Yan He
Atmos. Chem. Phys., 17, 9103–9114, https://doi.org/10.5194/acp-17-9103-2017,https://doi.org/10.5194/acp-17-9103-2017, 2017
Short summary
Light absorption of brown carbon aerosol in the PRD region of China
J.-F. Yuan, X.-F. Huang, L.-M. Cao, J. Cui, Q. Zhu, C.-N. Huang, Z.-J. Lan, and L.-Y. He
Atmos. Chem. Phys., 16, 1433–1443, https://doi.org/10.5194/acp-16-1433-2016,https://doi.org/10.5194/acp-16-1433-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021,https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021,https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Kraków, Poland
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021,https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Sources of black carbon at residential and traffic environments obtained by two source apportionment methods
Sanna Saarikoski, Jarkko V. Niemi, Minna Aurela, Liisa Pirjola, Anu Kousa, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 21, 14851–14869, https://doi.org/10.5194/acp-21-14851-2021,https://doi.org/10.5194/acp-21-14851-2021, 2021
Short summary
Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021,https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary

Cited articles

Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O ∕ C and OM∕OC ratios of primary, secondary, and ambient organic aerosols with high resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008. 
Alfarra, M. R., Prevot, A. S., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. A., Schreiber, D., Mohr, M., and Baltensperger, U.: Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol., 41, 5770–5777, https://doi.org/10.1021/es062289b, 2007. 
An, W. J., Pathak, R. K., Lee, B. H., and Pandis, S. N.: Aerosol volatility measurement using an improved thermodenuder: application to secondary organic aerosol, J. Aerosol Sci., 38, 305–314, https://doi.org/10.1016/j.jaerosci.2006.12.002, 2007. 
Baklanov, A., Molina, L. T., and Gauss, M.: Megacities, air quality and climate, Atmos. Environ., 126, 235–249, https://doi.org/10.1016/j.atmosenv.2015.11.059, 2015. 
Download
Short summary
A TD-AMS (thermodenuder aerosol mass spectrometer) system was deployed to study the volatility of non-refractory PM1 species during winter in Shenzhen, China. The volatility of chemical species measured with the AMS varied, with nitrate showing the highest volatility. Organics showed semi-volatile characteristics, and five subtypes of OA resolved by PMF modeling presented different volatilities. The results can contribute to the understanding of the formation and ageing of submicron aerosols.
Altmetrics
Final-revised paper
Preprint