Articles | Volume 17, issue 13
Atmos. Chem. Phys., 17, 8489–8508, 2017
https://doi.org/10.5194/acp-17-8489-2017
Atmos. Chem. Phys., 17, 8489–8508, 2017
https://doi.org/10.5194/acp-17-8489-2017

Research article 13 Jul 2017

Research article | 13 Jul 2017

Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared

Thomas Fauchez et al.

Related authors

TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0
Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman
Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020,https://doi.org/10.5194/gmd-13-707-2020, 2020
Short summary
Scale dependence of cirrus heterogeneity effects. Part II: MODIS NIR and SWIR channels
Thomas Fauchez, Steven Platnick, Tamás Várnai, Kerry Meyer, Céline Cornet, and Frédéric Szczap
Atmos. Chem. Phys., 18, 12105–12121, https://doi.org/10.5194/acp-18-12105-2018,https://doi.org/10.5194/acp-18-12105-2018, 2018
Short summary
An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer
Brian H. Kahn, Georgios Matheou, Qing Yue, Thomas Fauchez, Eric J. Fetzer, Matthew Lebsock, João Martins, Mathias M. Schreier, Kentaroh Suzuki, and João Teixeira
Atmos. Chem. Phys., 17, 9451–9468, https://doi.org/10.5194/acp-17-9451-2017,https://doi.org/10.5194/acp-17-9451-2017, 2017
Short summary
Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry
T. Fauchez, P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer
Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015,https://doi.org/10.5194/amt-8-633-2015, 2015
A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework
F. Szczap, Y. Gour, T. Fauchez, C. Cornet, T. Faure, O. Jourdan, G. Penide, and P. Dubuisson
Geosci. Model Dev., 7, 1779–1801, https://doi.org/10.5194/gmd-7-1779-2014,https://doi.org/10.5194/gmd-7-1779-2014, 2014

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Photovoltaic power potential in West Africa using long-term satellite data
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020,https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020,https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020,https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Biomass-burning-induced surface darkening and its impact on regional meteorology in eastern China
Rong Tang, Xin Huang, Derong Zhou, and Aijun Ding
Atmos. Chem. Phys., 20, 6177–6191, https://doi.org/10.5194/acp-20-6177-2020,https://doi.org/10.5194/acp-20-6177-2020, 2020
Short summary
Air pollution slows down surface warming over the Tibetan Plateau
Aolin Jia, Shunlin Liang, Dongdong Wang, Bo Jiang, and Xiaotong Zhang
Atmos. Chem. Phys., 20, 881–899, https://doi.org/10.5194/acp-20-881-2020,https://doi.org/10.5194/acp-20-881-2020, 2020
Short summary

Cited articles

Benassi, A., Szczap, F., Davis, A., Masbou, M., Cornet, C., and Bleuyard, P.: Thermal radiative fluxes through inhomogeneous cloud fields: a ensitivity study using a new stochastic cloud generator, Atmos. Res., 72, 291–315, 2004.
Buschmann, N., McFarquhar, G., and Heymsfield, A.: Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer, J. Geophys. Res.-Atmos., 107, 4445, https://doi.org/10.1029/2001JD001273, 2002.
Cahalan, R. F. and Snider, J. B.: Marine stratocumulus structure, Remote Sens. Environ., 28, 95–107, 1989.
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J. B.: The Albedo of Fractal Stratocumulus Clouds, J. Atmos. Sci., 5, 2434–2455, 1994.
Carlin, B., Fu, Q., Lohmann, U., Mace, J., Sassen, K., and Comstock, J. M.: High cloud horizontal inhomogeneity and solar albedo bias, J. Climate, 15, 2321–2339, 2002.
Download
Short summary
This study presents impact of cirrus cloud horizontal heterogeneity on simulated thermal infrared brightness temperatures at the top of the atmosphere for spatial resolutions ranging from 50 m to 10 km. The cirrus is generated by the 3DCLOUD code and the radiative transfer by the 3DMCPOL code. Brightness temperatures are mostly impacted by the horizontal transport effect and plane-parallel bias at high and coarse spatial resolutions, respectively, with a minimum around 100 m–250 m.
Altmetrics
Final-revised paper
Preprint