Articles | Volume 17, issue 8
Atmos. Chem. Phys., 17, 5379–5391, 2017
https://doi.org/10.5194/acp-17-5379-2017
Atmos. Chem. Phys., 17, 5379–5391, 2017
https://doi.org/10.5194/acp-17-5379-2017

Research article 26 Apr 2017

Research article | 26 Apr 2017

Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols

Jianlin Hu et al.

Related authors

Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China
Xue Qiao, Hao Guo, Ya Tang, Pengfei Wang, Wenye Deng, Xing Zhao, Jianlin Hu, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019,https://doi.org/10.5194/acp-19-5791-2019, 2019
Short summary
Source contributions and potential reductions to health effects of particulate matter in India
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018,https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017,https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Modeling biogenic and anthropogenic secondary organic aerosol in China
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017,https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary
One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system
Jianlin Hu, Jianjun Chen, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016,https://doi.org/10.5194/acp-16-10333-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Improving regional air quality predictions in the Indo-Gangetic Plain – case study of an intensive pollution episode in November 2017
Behrooz Roozitalab, Gregory R. Carmichael, and Sarath K. Guttikunda
Atmos. Chem. Phys., 21, 2837–2860, https://doi.org/10.5194/acp-21-2837-2021,https://doi.org/10.5194/acp-21-2837-2021, 2021
Short summary
Recommendations on benchmarks for numerical air quality model applications in China – Part 1: PM2.5 and chemical species
Ling Huang, Yonghui Zhu, Hehe Zhai, Shuhui Xue, Tianyi Zhu, Yun Shao, Ziyi Liu, Chris Emery, Greg Yarwood, Yangjun Wang, Joshua Fu, Kun Zhang, and Li Li
Atmos. Chem. Phys., 21, 2725–2743, https://doi.org/10.5194/acp-21-2725-2021,https://doi.org/10.5194/acp-21-2725-2021, 2021
Short summary
Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021,https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Comparison of chemical lateral boundary conditions for air quality predictions over the contiguous United States during pollutant intrusion events
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021,https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021,https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary

Cited articles

Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.
Cabada, J. C., Pandis, S. N., Subramanian, R., Robinson, A. L., Polidori, A., and Turpin, B.: Estimating the secondary organic aerosol contribution to PM2. 5 using the EC tracer method, Aerosol Sci. Tech., 38, 140–155, 2004.
Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ. Health Persp., 120, 373–378, 2012.
Cappa, C. D., Jathar, S. H., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Seinfeld, J. H., and Wexler, A. S.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses, Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, 2016.
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Altmetrics
Final-revised paper
Preprint