Articles | Volume 17, issue 8
Atmos. Chem. Phys., 17, 5379–5391, 2017
https://doi.org/10.5194/acp-17-5379-2017
Atmos. Chem. Phys., 17, 5379–5391, 2017
https://doi.org/10.5194/acp-17-5379-2017

Research article 26 Apr 2017

Research article | 26 Apr 2017

Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols

Jianlin Hu et al.

Related authors

Estimation of Secondary PM2.5 in China and the United States using a Multi-Tracer Approach
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-683,https://doi.org/10.5194/acp-2021-683, 2021
Preprint under review for ACP
Short summary
Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China
Xue Qiao, Hao Guo, Ya Tang, Pengfei Wang, Wenye Deng, Xing Zhao, Jianlin Hu, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019,https://doi.org/10.5194/acp-19-5791-2019, 2019
Short summary
Source contributions and potential reductions to health effects of particulate matter in India
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018,https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017,https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Modeling biogenic and anthropogenic secondary organic aerosol in China
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017,https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning
Nønne L. Prisle
Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021,https://doi.org/10.5194/acp-21-16387-2021, 2021
Short summary
Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021,https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021,https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021,https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary

Cited articles

Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.
Cabada, J. C., Pandis, S. N., Subramanian, R., Robinson, A. L., Polidori, A., and Turpin, B.: Estimating the secondary organic aerosol contribution to PM2. 5 using the EC tracer method, Aerosol Sci. Tech., 38, 140–155, 2004.
Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ. Health Persp., 120, 373–378, 2012.
Cappa, C. D., Jathar, S. H., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Seinfeld, J. H., and Wexler, A. S.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses, Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, 2016.
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Altmetrics
Final-revised paper
Preprint