Articles | Volume 17, issue 1
https://doi.org/10.5194/acp-17-465-2017
https://doi.org/10.5194/acp-17-465-2017
Research article
 | 
10 Jan 2017
Research article |  | 10 Jan 2017

In situ and denuder-based measurements of elemental and reactive gaseous mercury with analysis by laser-induced fluorescence – results from the Reno Atmospheric Mercury Intercomparison Experiment

Anthony J. Hynes, Stephanie Everhart, Dieter Bauer, James Remeika, and Cheryl Tatum Ernest

Related authors

Deployment of a sequential two-photon laser-induced fluorescence sensor for the detection of gaseous elemental mercury at ambient levels: fast, specific, ultrasensitive detection with parts-per-quadrillion sensitivity
D. Bauer, S. Everhart, J. Remeika, C. Tatum Ernest, and A. J. Hynes
Atmos. Meas. Tech., 7, 4251–4265, https://doi.org/10.5194/amt-7-4251-2014,https://doi.org/10.5194/amt-7-4251-2014, 2014
Short summary
Programmable thermal dissociation of reactive gaseous mercury – a potential approach to chemical speciation: results from a field study
C. Tatum Ernest, D. Donohoue, D. Bauer, A. Ter Schure, and A. J. Hynes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-12-33291-2012,https://doi.org/10.5194/acpd-12-33291-2012, 2012
Revised manuscript not accepted

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Multi-year observations of variable incomplete combustion in the New York megacity
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024,https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024,https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024,https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024,https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary

Cited articles

Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M. S., and Jaffe, D. A.: Fast time resolution oxidized mercury measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX), Environ. Sci. Technol., 47, 7284–7294, https://doi.org/10.1021/es303916v, 2013.
Bauer, D., Campuzano-Jost, P., and Hynes, A. J.: Rapid, ultra-sensitive detection of gas phase elemental mercury under atmospheric conditions using sequential two-photon laser induced fluorescence, J. Environ. Monitor., 4, 339–343, 2002.
Bauer, D., D'Ottone, L., Campuzano-Jost, P., and Hynes, A. J.: Gas Phase Elemental Mercury: A Comparison of LIF Detection Techniques and Study of the Kinetics of Reaction with the Hydroxyl Radical, J. Photochem. Photobiol., 57, 247–256, 247, https://doi.org/10.1016/S1010-6030(03)00065-0, 2003.
Bauer, D., Everhart, S., Remeika, J., Tatum Ernest, C., and Hynes, A. J.: Deployment of a sequential two-photon laser-induced fluorescence sensor for the detection of gaseous elemental mercury at ambient levels: fast, specific, ultrasensitive detection with parts-per-quadrillion sensitivity, Atmos. Meas. Tech., 7, 4251–4265, https://doi.org/10.5194/amt-7-4251-2014, 2014.
Download
Short summary
Exposure to mercury (Hg), is a significant issue from a human health perspective. Understanding the chemistry that leads to exposure is important. We have developed a laser-based sensor for the detection of gas-phase elemental mercury, Hg(0). The instrument is capable of fast in situ measurement of Hg(0) at ambient levels. The RAMIX experiment intercompared atmospheric Hg measurement systems. We typically saw good agreement for measurements of Hg(0) but not for total oxidized mercury.
Altmetrics
Final-revised paper
Preprint