Articles | Volume 17, issue 6
Atmos. Chem. Phys., 17, 4005–4030, 2017
https://doi.org/10.5194/acp-17-4005-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Coupled chemistry–meteorology modelling: status and...
Research article 24 Mar 2017
Research article | 24 Mar 2017
Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation
Alejandro Marti et al.
Related authors
Alejandro Marti and Arnau Folch
Atmos. Chem. Phys., 18, 4019–4038, https://doi.org/10.5194/acp-18-4019-2018, https://doi.org/10.5194/acp-18-4019-2018, 2018
Short summary
Short summary
We use the NMMB-MONARCH-ASH model to quantify the systematic errors associated with traditional offline modeling systems used for operational volcanic ash forecast. Evaluation scores indicate that uncertainties credited to offline modeling are of the same order of magnitude as those associated with the source term, failing to reproduce up to 45–70 % of the ash cloud of an online forecast. This work encourages operational groups to consider online dispersal models for real-time aviation advisory.
Marc Guevara, Oriol Jorba, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Nellie Elguindi, Sabine Darras, Claire Granier, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 13, 367–404, https://doi.org/10.5194/essd-13-367-2021, https://doi.org/10.5194/essd-13-367-2021, 2021
Short summary
Short summary
The temporal variability of atmospheric emissions is linked to changes in activity patterns, emission processes and meteorology. Accounting for the change in temporal emission characteristics is a key aspect for modelling the trends of air pollutants. This work presents a dataset of global and European emission temporal profiles to be used for air quality modelling purposes. The profiles were constructed considering the influences of local sociodemographic factors and climatological conditions.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Marc Guevara, Oriol Jorba, Albert Soret, Hervé Petetin, Dene Bowdalo, Kim Serradell, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 21, 773–797, https://doi.org/10.5194/acp-21-773-2021, https://doi.org/10.5194/acp-21-773-2021, 2021
Short summary
Short summary
Most European countries have imposed lockdowns to combat the spread of the COVID-19 pandemic. Such a socioeconomic disruption has resulted in a sudden drop of atmospheric emissions and air pollution levels. This study quantifies the daily reductions in national emissions and associated levels of nitrogen dioxide (NO2) due to the COVID-19 lockdowns in Europe, by making use of multiple open-access measured activity data as well as artificial intelligence and modelling techniques.
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-995, https://doi.org/10.5194/acp-2020-995, 2020
Revised manuscript under review for ACP
Short summary
Short summary
This study provides a comprehensive assessment of air quality changes across the main European urban areas induced by the COVID-19 lockdown using satellite observations, surface site measurements and forecasting system from the Copernicus Atmospheric Monitoring Service (CAMS). We demonstrate the importance of accounting for weather and seasonal variability in when calculating such estimates.
Hervé Petetin, Dene Bowdalo, Albert Soret, Marc Guevara, Oriol Jorba, Kim Serradell, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 20, 11119–11141, https://doi.org/10.5194/acp-20-11119-2020, https://doi.org/10.5194/acp-20-11119-2020, 2020
Short summary
Short summary
To control the spread of the COVID-19 coronavirus, the Spanish Government recently implemented a strict lockdown of the population, which strongly reduced the levels of nitrogen dioxide (NO2), one of the most critical air pollutants in Spain. This study quantifies the contribution of the lockdown on these reduced NO2 levels in Spain, taking the confounding effect of meteorology on artificial intelligence techniques into account.
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details the FALL3D-8.0 model physics and the numerical implementation of the code.
Marc Guevara, Carles Tena, Manuel Porquet, Oriol Jorba, and Carlos Pérez García-Pando
Geosci. Model Dev., 13, 873–903, https://doi.org/10.5194/gmd-13-873-2020, https://doi.org/10.5194/gmd-13-873-2020, 2020
Short summary
Short summary
Emission inventories are a key input to numerical systems that simulate air quality. In this paper, we present an open-source tool intended for the computation of high-resolution anthropogenic emissions for air quality modelling. Emissions are estimated using detailed methods that combine local activity and emission factors along with meteorological data. Specific results are presented for Spain. Nevertheless, the model is designed so that it can be applicable to any European country or region.
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Short summary
Volcanic ash dispersal forecasts are routinely used to avoid aircraft encounters with volcanic ash. However, the accuracy of these forecasts depends on the knowledge of key factors that are usually difficult to observe directly. In this work we apply an inverse methodology to improve ash concentration forecasts. Results are encouraging, showing that accurate estimations of ash emissions can be performed using the proposed approach, leading to an improvement in ash concentration forecasts.
Jaime Benavides, Michelle Snyder, Marc Guevara, Albert Soret, Carlos Pérez García-Pando, Fulvio Amato, Xavier Querol, and Oriol Jorba
Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, https://doi.org/10.5194/gmd-12-2811-2019, 2019
Short summary
Short summary
The NO2 annual air quality limit value is systematically exceeded in many European cities. In this context, understanding human exposure, improving policy and planning, and providing forecasts requires the development of accurate air quality models at street level. We describe CALIOPE-Urban, a system coupling an operational mesoscale air quality forecast system with an urban roadway dispersion model over Barcelona city (Spain). The methodology may be replicated for other cities in the future.
Marc Guevara, Carles Tena, Manuel Porquet, Oriol Jorba, and Carlos Pérez García-Pando
Geosci. Model Dev., 12, 1885–1907, https://doi.org/10.5194/gmd-12-1885-2019, https://doi.org/10.5194/gmd-12-1885-2019, 2019
Short summary
Short summary
Atmospheric emission inventories, which describe the amounts of pollutants released into the air by different sources and for specific regions, are an essential input to numerical models that estimate air quality. This work presents the High-Elective Resolution Modelling Emission System version 3 (HERMESv3), an open-source modelling framework that allows adapting existing global and regional emission inventories to the input requirements of air quality models in a flexible and transparent way.
María Teresa Pay, Gotzon Gangoiti, Marc Guevara, Sergey Napelenok, Xavier Querol, Oriol Jorba, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 19, 5467–5494, https://doi.org/10.5194/acp-19-5467-2019, https://doi.org/10.5194/acp-19-5467-2019, 2019
Short summary
Short summary
The poor diagnostic of the O3 issue over southwestern Europe prevents authorities from implementing effective mitigation plans. This work is a pioneer in identifying that imported O3 is the largest input to the ground-level O3 concentration in the Iberian Peninsula, which is largely explained by vertical mixing. This study also proves that anthropogenic emissions control the severe O3 peaks during stagnant conditions. Ad hoc local actions should complement national/European strategies.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Antonis Gkikas, Vincenzo Obiso, Carlos Pérez García-Pando, Oriol Jorba, Nikos Hatzianastassiou, Lluis Vendrell, Sara Basart, Stavros Solomos, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 18, 8757–8787, https://doi.org/10.5194/acp-18-8757-2018, https://doi.org/10.5194/acp-18-8757-2018, 2018
Short summary
Short summary
The present study investigates the direct radiative effects (DREs), induced during 20 intense Mediterranean desert dust outbreaks, based on regional short-term numerical simulations of the NMMB-MONARCH model: more specifically, (i) the DREs and their associated impacts on temperature and surface sensible and latent heat fluxes, (ii) the feedbacks on dust AOD and dust emissions, and (iii) the possible improvements in short-term forecasts (up to 84 h) of temperature and radiation.
Alejandro Marti and Arnau Folch
Atmos. Chem. Phys., 18, 4019–4038, https://doi.org/10.5194/acp-18-4019-2018, https://doi.org/10.5194/acp-18-4019-2018, 2018
Short summary
Short summary
We use the NMMB-MONARCH-ASH model to quantify the systematic errors associated with traditional offline modeling systems used for operational volcanic ash forecast. Evaluation scores indicate that uncertainties credited to offline modeling are of the same order of magnitude as those associated with the source term, failing to reproduce up to 45–70 % of the ash cloud of an online forecast. This work encourages operational groups to consider online dispersal models for real-time aviation advisory.
Albert Ansmann, Franziska Rittmeister, Ronny Engelmann, Sara Basart, Oriol Jorba, Christos Spyrou, Samuel Remy, Annett Skupin, Holger Baars, Patric Seifert, Fabian Senf, and Thomas Kanitz
Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017, https://doi.org/10.5194/acp-17-14987-2017, 2017
Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 17, 861–879, https://doi.org/10.5194/nhess-17-861-2017, https://doi.org/10.5194/nhess-17-861-2017, 2017
Short summary
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Leonardo A. Mingari, Estela A. Collini, Arnau Folch, Walter Báez, Emilce Bustos, María Soledad Osores, Florencia Reckziegel, Peter Alexander, and José G. Viramonte
Atmos. Chem. Phys., 17, 6759–6778, https://doi.org/10.5194/acp-17-6759-2017, https://doi.org/10.5194/acp-17-6759-2017, 2017
Short summary
Short summary
In this paper, we provide the first comprehensive description of
a dust episode occurred in South America in June 2015 through
observations and numerical simulations. We have investigated
the spatiotemporal distribution of aerosols and the emission
process over complex terrain to gain insight into the key role
played by the orography and the condition that triggered the
long-range transport episode.
Enza Di Tomaso, Nick A. J. Schutgens, Oriol Jorba, and Carlos Pérez García-Pando
Geosci. Model Dev., 10, 1107–1129, https://doi.org/10.5194/gmd-10-1107-2017, https://doi.org/10.5194/gmd-10-1107-2017, 2017
Short summary
Short summary
A data assimilation capability has been built for a chemical weather prediction system, with a focus on mineral dust. Before this work, dust was produced uniquely from model estimated emissions. As emissions are recognized as a major factor limiting the accuracy of dust modelling, satellite observations have been used to improve the description of the atmospheric dust load, with a significant impact on dust forecast from assimilating observations particularly relevant for dust applications.
Alba Badia, Oriol Jorba, Apostolos Voulgarakis, Donald Dabdub, Carlos Pérez García-Pando, Andreas Hilboll, María Gonçalves, and Zavisa Janjic
Geosci. Model Dev., 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, https://doi.org/10.5194/gmd-10-609-2017, 2017
Short summary
Short summary
This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), an online chemical weather prediction system conceived for both the regional and global scales. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations, ozonesondes, aircraft data and satellite observations.
Ioannis Kioutsioukis, Ulas Im, Efisio Solazzo, Roberto Bianconi, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Oriol Jorba, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guidio Pirovano, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 16, 15629–15652, https://doi.org/10.5194/acp-16-15629-2016, https://doi.org/10.5194/acp-16-15629-2016, 2016
Short summary
Short summary
Four ensemble methods are applied to two annual AQMEII datasets and their performance is compared for O3, NO2 and PM10. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill at each station over the single models and the ensemble mean. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
W. R. Sessions, J. S. Reid, A. Benedetti, P. R. Colarco, A. da Silva, S. Lu, T. Sekiyama, T. Y. Tanaka, J. M. Baldasano, S. Basart, M. E. Brooks, T. F. Eck, M. Iredell, J. A. Hansen, O. C. Jorba, H.-M. H. Juang, P. Lynch, J.-J. Morcrette, S. Moorthi, J. Mulcahy, Y. Pradhan, M. Razinger, C. B. Sampson, J. Wang, and D. L. Westphal
Atmos. Chem. Phys., 15, 335–362, https://doi.org/10.5194/acp-15-335-2015, https://doi.org/10.5194/acp-15-335-2015, 2015
Short summary
S. Biass, C. Scaini, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, https://doi.org/10.5194/nhess-14-2265-2014, 2014
C. Scaini, S. Biass, A. Galderisi, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2289–2312, https://doi.org/10.5194/nhess-14-2289-2014, https://doi.org/10.5194/nhess-14-2289-2014, 2014
A. Folch, L. Mingari, M. S. Osores, and E. Collini
Nat. Hazards Earth Syst. Sci., 14, 119–133, https://doi.org/10.5194/nhess-14-119-2014, https://doi.org/10.5194/nhess-14-119-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
M. Spada, O. Jorba, C. Pérez García-Pando, Z. Janjic, and J. M. Baldasano
Atmos. Chem. Phys., 13, 11735–11755, https://doi.org/10.5194/acp-13-11735-2013, https://doi.org/10.5194/acp-13-11735-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management
Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883
Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble
Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models
Revisiting the Agung 1963 volcanic forcing – impact of one or two eruptions
Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations
Upper tropospheric ice sensitivity to sulfate geoengineering
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols
Global radiative effects of solid fuel cookstove aerosol emissions
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations
Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model
Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009
Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)
Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles
Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas
Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide
Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering
What is the limit of climate engineering by stratospheric injection of SO2?
Quasi-biennial oscillation of the tropical stratospheric aerosol layer
The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure
Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions
Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation
Could aerosol emissions be used for regional heat wave mitigation?
The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions
Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere
Initial fate of fine ash and sulfur from large volcanic eruptions
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Lorenzo M. Polvani and Suzana J. Camargo
Atmos. Chem. Phys., 20, 13687–13700, https://doi.org/10.5194/acp-20-13687-2020, https://doi.org/10.5194/acp-20-13687-2020, 2020
Short summary
Short summary
On the basis of questionable early studies, it is widely believed that low-latitude volcanic eruptions cause winter warming over Eurasia. However, we here demonstrate that the winter warming over Eurasia following the 1883 Krakatau eruption was unremarkable and, in all likelihood, unrelated to that eruption. Confirming similar findings for the 1991 Pinatubo eruption, the new research demonstrates that no detectable Eurasian winter warming is to be expected after eruptions of similar magnitude.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-883, https://doi.org/10.5194/acp-2020-883, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Ulrike Niemeier, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, https://doi.org/10.5194/acp-20-8975-2020, 2020
Short summary
Short summary
Artificial injections of SO2 into the tropical stratosphere show an impact on the quasi-biennial oscillation (QBO). Different numerical models show only qualitatively but not quantitatively consistent impacts. We show for two models that the response of the QBO is similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason is very different vertical advection in the two models resulting in different aerosol burden and heating of the aerosols.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Daniele Visioni, Giovanni Pitari, Glauco di Genova, Simone Tilmes, and Irene Cionni
Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, https://doi.org/10.5194/acp-18-14867-2018, 2018
Short summary
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Short summary
Use of multi-instrument satellite data is important to get consistent simulations of aerosol radiative forcing by a complex chemistry climate model, here with a main focus on the lower stratosphere. The satellite data at different wavelengths together with the patterns in the simulated size distribution point to a significant contribution from moist mineral dust lifted to the tropopause region by the Asian summer monsoon.
Tao Tang, Drew Shindell, Bjørn H. Samset, Oliviér Boucher, Piers M. Forster, Øivind Hodnebrog, Gunnar Myhre, Jana Sillmann, Apostolos Voulgarakis, Timothy Andrews, Gregory Faluvegi, Dagmar Fläschner, Trond Iversen, Matthew Kasoar, Viatcheslav Kharin, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas Richardson, Camilla W. Stjern, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, https://doi.org/10.5194/acp-18-8439-2018, 2018
Yaoxian Huang, Nadine Unger, Trude Storelvmo, Kandice Harper, Yiqi Zheng, and Chris Heyes
Atmos. Chem. Phys., 18, 5219–5233, https://doi.org/10.5194/acp-18-5219-2018, https://doi.org/10.5194/acp-18-5219-2018, 2018
Short summary
Short summary
We apply a global 3-D climate model to quantify the climate impacts of carbonaceous aerosols from solid fuel cookstove emissions. Without black carbon (BC) serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling impacts. However, when BC acts as IN, the net sign of radiative impacts of carbonaceous aerosols from solid fuel cookstove emissions varies with the choice of maximum freezing efficiency of BC during ice cloud formation.
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, https://doi.org/10.5194/acp-18-3223-2018, 2018
Short summary
Short summary
We quantify the chemical and microphysical effects of volcanic SO2 and HCl from the June 2009 Sarychev Peak eruption using a comprehensive aerosol–chemistry model combined with in situ measurements and satellite retrievals. Our results suggest that previous studies underestimated the eruption's atmospheric and climatic impact, mainly because previous model-to-satellite comparisons had to make assumptions about the aerosol size distribution and were based on biased satellite retrievals of AOD.
Christoph Kleinschmitt, Olivier Boucher, and Ulrich Platt
Atmos. Chem. Phys., 18, 2769–2786, https://doi.org/10.5194/acp-18-2769-2018, https://doi.org/10.5194/acp-18-2769-2018, 2018
Short summary
Short summary
We use a state-of-the-art stratospheric aerosol model to study geoengineering through stratospheric sulfur injections. We find that the efficiency may decrease more drastically for larger injections than previously estimated and that injections at higher altitude are not more effective. This study may provide additional evidence that this proposed geoengineering technique is still more complicated, probably less effective, and may implicate stronger side effects than initially thought.
Daniele Visioni, Giovanni Pitari, Paolo Tuccella, and Gabriele Curci
Atmos. Chem. Phys., 18, 2787–2808, https://doi.org/10.5194/acp-18-2787-2018, https://doi.org/10.5194/acp-18-2787-2018, 2018
Short summary
Short summary
Sulfate geoengineering is a proposed technique that would mimic explosive volcanic eruptions by injecting sulfur dioxide (SO2) into the stratosphere to counteract global warming produced by greenhouse gases by reflecting part of the incoming solar radiation. In this study we use two models to simulate how the injected aerosols would react to dynamical changes in the stratosphere (due to the quasi-biennial oscillation - QBO) and how this would affect the deposition of sulfate at the surface.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, https://doi.org/10.5194/acp-17-13439-2017, 2017
Short summary
Short summary
This study is focused on the Sarychev eruption in 2009. Based on Lagrangian model simulations and satellite data, the equatorward transport of the plume and aerosol from the Sarychev eruption is confirmed, and the transport is facilitated by the Asian summer monsoon anticyclonic circulations. The aerosol transported to the tropics remained for months and dispersed upward, which could make the Sarychev eruption have a similar global climate impact as a tropical volcanic eruption.
Daniele Visioni, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini
Atmos. Chem. Phys., 17, 11209–11226, https://doi.org/10.5194/acp-17-11209-2017, https://doi.org/10.5194/acp-17-11209-2017, 2017
Short summary
Short summary
Sulfate geoengineering (SG), the sustained injection of SO2 in the lower stratosphere, is being discussed as a way to counterbalance surface warming, mimicking volcanic eruptions. In this paper, we analyse results from two models part of the GeoMIP project in order to understand the effect SG might have on the concentration and lifetime of methane, which acts in the atmosphere as a greenhouse gas. Understanding possible side effects of SG is a crucial step if its viability is to be assessed.
Steffen Münch and Joachim Curtius
Atmos. Chem. Phys., 17, 7581–7591, https://doi.org/10.5194/acp-17-7581-2017, https://doi.org/10.5194/acp-17-7581-2017, 2017
Short summary
Short summary
Recent research has analyzed the formation of a particle (CN) layer in the stratosphere above Antarctica after sunrise. We investigate the CN layer formation processes with our particle formation model and derive sulfuric acid profiles (no measurements exist). Our study confirms existing explanations and gives more insights into the formation process, leading to higher derived concentrations. Therefore, this paper improves our understanding of the processes in the high atmosphere.
Anton Laakso, Hannele Korhonen, Sami Romakkaniemi, and Harri Kokkola
Atmos. Chem. Phys., 17, 6957–6974, https://doi.org/10.5194/acp-17-6957-2017, https://doi.org/10.5194/acp-17-6957-2017, 2017
Short summary
Short summary
Based on simulations, equatorial stratospheric sulfur injections have shown to be an efficient strategy to counteract ongoing global warming. However, equatorial injections would result in relatively larger cooling in low latitudes than in high latitudes. This together with greenhouse-gas-induced warming would lead to cooling in the Equator and warming in the high latitudes. Results of this study show that a more optimal cooling effect is achieved by varying the injection area seasonally.
Daniele Visioni, Giovanni Pitari, and Valentina Aquila
Atmos. Chem. Phys., 17, 3879–3889, https://doi.org/10.5194/acp-17-3879-2017, https://doi.org/10.5194/acp-17-3879-2017, 2017
Short summary
Short summary
This review paper summarizes the state-of-the-art knowledge of the direct and indirect side effects of sulfate geoengineering, that is, the injection of sulfur dioxide into the stratosphere in order to offset the warming caused by the anthropic increase in greenhouse gasses. An overview of the various effects and their uncertainties, using results from published scientific articles, may help fine-tune the best amount of sulfate to be injected in an eventual realization of the experiment.
Anthony C. Jones, James M. Haywood, and Andy Jones
Atmos. Chem. Phys., 16, 2843–2862, https://doi.org/10.5194/acp-16-2843-2016, https://doi.org/10.5194/acp-16-2843-2016, 2016
Short summary
Short summary
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black carbon and titania injection strategies. We find that black carbon injection results in severe stratospheric warming and precipitation impacts, and therefore black carbon is unsuitable for geoengineering purposes. As the injection rates and climatic impacts for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
D. N. Bernstein, J. D. Neelin, Q. B. Li, and D. Chen
Atmos. Chem. Phys., 13, 6373–6390, https://doi.org/10.5194/acp-13-6373-2013, https://doi.org/10.5194/acp-13-6373-2013, 2013
M. Toohey, K. Krüger, U. Niemeier, and C. Timmreck
Atmos. Chem. Phys., 11, 12351–12367, https://doi.org/10.5194/acp-11-12351-2011, https://doi.org/10.5194/acp-11-12351-2011, 2011
J. M. English, O. B. Toon, M. J. Mills, and F. Yu
Atmos. Chem. Phys., 11, 9303–9322, https://doi.org/10.5194/acp-11-9303-2011, https://doi.org/10.5194/acp-11-9303-2011, 2011
U. Niemeier, C. Timmreck, H.-F. Graf, S. Kinne, S. Rast, and S. Self
Atmos. Chem. Phys., 9, 9043–9057, https://doi.org/10.5194/acp-9-9043-2009, https://doi.org/10.5194/acp-9-9043-2009, 2009
Cited articles
Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S., and Dudhia, J.: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling, Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL054031, 2012.
Ames, W.: Numerical methods for partial differential equations, Nelson, London, 1969.
Arastoopour, H., Wang, C.-H., and Weil, S. A.: Particle-particle interaction force in a dilute gas-solid system, Chem. Eng. Sci., 37, 1379–1386, https://doi.org/10.1016/0009-2509(82)85010-0, 1982.
Badia, A., Jorba, O., Voulgarakis, A., Dabdub, D., Pérez García-Pando, C., Hilboll, A., Gonçalves, M., and Janjic, Z.: Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale, Geosci. Model Dev., 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, 2017.
Baines, P. and Sparks, R. S. J.: Dynamics of giant volcanic ash clouds from supervolcanic eruptions, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL024597, 2005.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J. M., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: Current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets, Q. J. Roy. Meteorol. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308, 1986.
Biass, S. and Bonadonna, C.: A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: The example of two large eruptions of Cotopaxi volcano, Ecuador, Bull. Volcanol., 73, 73–90, https://doi.org/10.1007/s00445-010-0404-5, 2011.
Bonadonna, C. and Costa, A.: Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function, Bull. Volcanol., 75, 1–19, https://doi.org/10.1007/s00445-013-0742-1, 2013.
Bonadonna, C., Biass, S., and Costa, A.: Physical characterization of explosive volcanic eruptions based on tephra deposits: Propagation of uncertainties and sensitivity analysis, J. Volcanol. Geoth. Res., https://doi.org/10.1016/j.jvolgeores.2015.03.009, in press, 2015a.
Bonadonna, C., Cioni, R., and Pistolesi, M.: Sedimentation of long-lasting wind-affected volcanic plumes?: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile, Bull. Volcanol., https://doi.org/10.1007/s00445-015-0900-8, in press, 2015b.
Branca, S. and Del Carlo, P.: Types of eruptions of Etna volcano AD 1670–2003: Implications for short-term eruptive behaviour, Bull. Volcanol., 67, 732–742, https://doi.org/10.1007/s00445-005-0412-z, 2005.
Carey, S. and Sparks, R. S. J.: Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bull. Volcanol., 48, 109–125, https://doi.org/10.1007/BF01046546, 1986.
Casadevall, T. J.: Volcanic Hazards and Aviation Safety: Lessons of the Past Decade, Flight Safety Digest, Flight Safety Foundation, Incorporated, 1993.
Collini, E., Osores, M. S., Folch, A., Viramonte, J., Villarosa, G., and Salmuni, G.: Volcanic ash forecast during the June 2011 Cordón Caulle eruption, Nat. Hazards, 66, 389–412, https://doi.org/10.1007/s11069-012-0492-y, 2013.
Connor, L. and Connor, C.: Inversion is the Key to Dispersion: Understanding Eruption Dynamics by Inverting Tephra Fallout, Special Publications of IAVCEI, 1, Geological Society, London, 231–242, 2006.
Cornell, W., Carey, S., and Sigurdsson, H.: Computer simulation of transport and deposition of the Campanian Y-5 ash, J. Volcanol. Geoth. Res., 17, 89–109, 1983.
Costa, A., Macedonio, G., and Folch, A.: A three-dimensional Eulerian model for transport and deposition of volcanic ashes, Earth Planet. Sc. Lett., 241, 634–647, https://doi.org/10.1016/j.epsl.2005.11.019, 2006.
Costa, A., Folch, A., and MacEdonio, G.: A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation, J. Geophys. Res.-Solid Ea., 115, 1–14, https://doi.org/10.1029/2009JB007175, 2010.
Costa, A., Folch, A., and Macedonio, G.: Density-driven transport in the umbrella region of volcanic clouds?: Implications for tephra dispersion models, Geophys. Res. Lett., 40, 4823–4827, https://doi.org/10.1002/grl.50942, 2013.
Costa, A., Suzuki, Y., Cerminara, M., Devenish, B. J., Esposti Ongaro, T., Herzog, M., Van Eaton, A., Denby, L., Bursik, M., De' Michieli Vitturi, M., Engwell, S., Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G., Tait, S., Kaminski, É., Mastin, L., Woodhouse, M., Phillips, J., Hogg, A., Degruyter, W., and Bonadonna, C.: Overview of the Results of the Eruption Column Model Intercomparison Exercise, J. Volcanol. Geoth. Res., https://doi.org/10.1016/j.jvolgeores.2016.01.017, in press, 2015.
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size distribution: Insights from field data analysis, Earth Planet. Sc. Lett., 443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016.
Darwin VAAC: Satellite image of path of the Cordon Caulle ash cloud around the southern hemisphere from 5–12 June 2011, Bur. Meteorol., available at: http://www.bom.gov.au/info/vaac/cordon_caulle.shtml (last access: 7 February 2017), 2011.
Dee, D. P., Uppala, S. M., Simmons, a. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Degruyter, W. and Bonadonna, C.: Improving on mass flow rate estimates of volcanic eruptions, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052566, 2012.
Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio, R.: The analysis of the influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023954, 2005.
Devenish, B. J., Francis, P. N., Johnson, B. T., Sparks, R. S. J., and Thomson, D. J.: Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull in May 2010, J. Geophys. Res.-Atmos., 117, D00U21, https://doi.org/10.1029/2011JD016782, 2012.
Draxler, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Elissondo, M., Baumann, V., Bonadonna, C., Pistolesi, M., Cioni, R., Bertagnini, A., Biass, S., Herrero, J. C., and Gonzalez, R.: Chronology and impact of the 2011 Cordon Caulle eruption, Chile, Nat. Hazards Earth Syst. Sci., 16, 675–704, https://doi.org/10.5194/nhess-16-675-2016, 2016.
Ferrier, B., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G.: Implementation of a new frid-scale cloud and precipitation shceme in the NCEP Eta Model, in: Proc. 15th Conf. on Numerical Weather Prediction, 12–16 August 2002, San Antonio, TX, American Meteorological Society, San Antonio, TX, 280–283, 2002.
Folch, A.: A review of tephra transport and dispersal models: Evolution, current status, and future perspectives, J. Volcanol. Geoth. Res., 235–236, 96–115, https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012.
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342, https://doi.org/10.1016/j.cageo.2008.08.008, 2009.
Folch, A., Costa, A., and Macedonio, G.: A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation, J. Geophys. Res.-Solid Ea., 115, 1–16, https://doi.org/10.1029/2009JB007175, 2010.
Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, 2016.
Gadd, A.: An economical explicit integration scheme, Tech. Note 4, Meteorological Office, UK, 1974.
Galmarini, S., Hogrefe, C., Brunner, D., Baklanov, A., and Makar, P.: Preface Article for the Atmospheric Environment Special Issue on AQMEII Phase 2, Atmos. Environ., 115, 340–344, 2015.
Ganser, G. H.: A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol., 77, 143–152, https://doi.org/10.1016/0032-5910(93)80051-B, 1993.
Girault, F., Carazzo, G., Tait, S., Ferrucci, F., and Kaminski, É.: The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes, Earth Planet. Sc. Lett., 394, 124–134, https://doi.org/10.1016/j.epsl.2014.03.021, 2014.
Grell, G. A. and Baklanov, A.: Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches, Atmos. Environ., 45, 6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.
Grell, G. A., Knoche, R., Peckham, S. E., and McKeen, S. A.: Online versus offline air quality modeling on cloud-resolving scales, Geophys. Res. Lett., 31, 6–9, https://doi.org/10.1029/2004GL020175, 2004.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W., and Eder, B.: Fully coupled
onlinechemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guffanti, M., Mayberry, G. C., Casadevall, T., and Wunderman, R.: Volcanic hazards to airports, Nat. Hazards, 51, 287–302, https://doi.org/10.1007/s11069-008-9254-2, 2009.
Janjic, Z.: Pressure gradient force and advection scheme used for forecasting with steep and small scale topography, Beitr. Phys. Atmos., 50, 186–199, 1977.
Janjic, Z.: Forward-backward scheme modified to prevent two-grid-interval noise and its application in sigma coordinate models, Contrib. Atmos. Phys., 52, 69–84, 1979.
Janjic, Z.: Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids, Mon. Weather Rev., 112, 1234–1245, https://doi.org/10.1175/1520-0493(1984)112<1234:NASAEC>2.0.CO;2, 1984.
Janjic, Z.: The Step-Mountain Coordinate: Physical Package, Mon. Weather Rev., 118, 1429–1443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2, 1990.
Janjic, Z.: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Janjic, Z.: The Mellor-Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model, WORLD Meteorol. Organ. TD, WMO, Geneva, Switzerland, 4–14, 1996.
Janjic, Z.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, Natl. Centers Environ. Predict., available at: http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf (last access: 7 February 2017), 2001.
Janjic, Z.: A nonhydrostatic model based on a new approach, Meteorol. Atmos. Phys., 82, 271–285, https://doi.org/10.1007/s00703-001-0587-6, 2003.
Janjic, Z.: A unified model approach from meso to global scales, in: EGU General Assembly Conference Abstracts, vol. 7, European Geosciences Union, Vienna, Austria, 2005.
Janjic, Z. and Black, T.: An ESMF unified model for a broad range of spatial and temporal scales, in: EGU General Assembly Conference Abstracts, vol. 9, European Geosciences Union, Vienna, Austria, 2007.
Janjic, Z. and Gall, R.: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 Dynamics, Vienna, Austria, 72, https://doi.org/10.5065/D6WH2MZX, 2012.
Janjic, Z., Gerrity, J., and Nickovic, S.: An Alternative Approach to Nonhydrostatic Modeling, Part III: Nonlinear Mountain Wave Test, NCAR Technical Note, World Meteorol. Organ. TD, WMO, 75 pp., 2000.
Janjic, Z., Huang, H., and Lu, S.: A unified atmospheric model suitable for studying transport of mineral aerosols from meso to global scales, IOP Conf. Ser. Earth Environ. Sci., 7, 12011, https://doi.org/10.1088/1755-1307/7/1/012011, 2009.
Janjic, Z., Janjic, T., and Vasic, R.: A Class of Conservative Fourth-Order Advection Schemes and Impact of Enhanced Formal Accuracy on Extended-Range Forecasts, Mon. Weather Rev., 139, 1556–1568, https://doi.org/10.1175/2010MWR3448.1, 2011.
Jay, J., Costa, F., Pritchard, M., Lara, L., Singer, B., and Herrin, J.: Erratum to
Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption, Earth Planet. Sc. Lett., 395, 254–266, https://doi.org/10.1016/j.epsl.2014.07.021, 2014.
Jöckel, P., von Kuhlmann, R., Lawrence, M. G., Steil, B., Brenninkmeijer, C. M., Crutzen, P. J., Rasch, P. J., and Eaton, B.: On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models, Q. J. Roy. Meteorol. Soc., 127, 1035–1052, https://doi.org/10.1002/qj.49712757318, 2001.
Jorba, O., Dabdub, D., Blaszczak-Boxe, C., Pérez, C., Janjic, Z., Baldasano, J. M., Spada, M., Badia, A., and Gonçalves, M.: on global air quality with the NMMB/BSC chemical transport model, J. Geophys. Res., 117, D13301, https://doi.org/10.1029/2012JD017730, 2012.
Kidder, S. and VonderHaar, T.: Satellite meteorology: an introduction, Academic Press, New York, NY, 1995.
Lin, J. C.: Lagrangian Modeling of the Atmosphre: An Introduction, in: Lagrangian Modeling of the Atmosphere, American Geophysical Union, Vienna, Austria, 1–11, 2012.
Lorenz, E. N.: Energy and numerical weather prediction, Tellus, 12, 364–373, 1960.
Marti, A., Folch, A., and Jorba, O.: On-line coupling of volcanic ash and aerosols transport with multiscale meteorological models, in: IAVCEI 2013 Scientific Assembly, Kagoshima, Japan, 2013.
Marti, A., Folch, A., and Jorba, O.: On-line coupling of volcanic ash and aerosols transport with multi-scale meteorological models, in: Cities on Volcanoes 8, Jakarta, Indonesia, 2014.
Marti, A., Folch, A., Costa, A., and Engwell, S.: Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite, Sci. Rep., 6, 21220, https://doi.org/10.1038/srep21220, 2016.
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J. W., Neri, A., Rose, W., Schneider, D., Siebert, L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C. F.: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21, https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009.
Mastin, L. G., Van Eaton, A., and Lowenstern, J.: Modeling ash fall distribution from a Yellowstone supereruption, Geochem. Geophy. Geosy., 15, 3459–3475, https://doi.org/10.1002/2014GC005469, 2014.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Mesinger, F.: Forward-backward scheme, and its use in a limited area model, Beitr. Phys. Atmos., 50, 200–210, 1977.
Mlawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163–187, 1954.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Osores, M. S., Folch, A., Ruiz, J., and Collini, E.: Estimación de alturas de columna eruptiva a partir de imáges captadas por el sensor IMAGER del GOES-13, y su empleo para el pronóstico de dispersión y depóstio de cenizas volcánicas sobre Argentina, in: XIX Congreso Geologico Argentino, Tucumán, Argentina, 2014.
Osores, M. S., Collini, E., Mingari, L., Folch, A., Ruiz, L., Toyos, G., Pujol, G., Farias, C., Alexander, P., Suaya, M., Schonholz, T., Viramonte, J. G., and Villarosa, G.: Volcanic Ash Dispersion Modeling, Forecasting and Remote Sensing in Argentina. Recent and future developments, in: IUGG-VW04 Remote Sensing and Modelling of Volcanic Ash in Latin America, International Union of Geodesy and Geophysics (IUGG), Prague, Czech Republic, 2015.
Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Black, T., Basart, S., Nickovic, S., Miller, R. L., Perlwitz, J. P., Schulz, M., and Thomson, M. J.: Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model; Part 1: Model description, annual simulations and evaluation, Atmos. Chem. Phys., 11, 13001–13027, https://doi.org/10.5194/acp-11-13001-2011, 2011.
Pfeiffer, T., Costa, A., and Macedonio, G.: A model for the numerical simulation of tephra fall deposits, J. Volcanol. Geoth. Res., 140, 273–294, https://doi.org/10.1016/j.jvolgeores.2004.09.001, 2005.
Pistolesi, M., Cioni, R., Bonadonna, C., Elissondo, M., Baumann, V., Bertagnini, A., Chiari, L., and Gonzales, R.: Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile, Bull. Volcanol., 77, https://doi.org/10.1007/s00445-014-0898-3, 2015.
Prata, A. J.: Infrared radiative transfer calculations for volcanic ash clouds, Geophys. Res. Lett., 16, 1293–1296, https://doi.org/10.1029/GL016i011p01293, 1989a.
Prata, A. J.: Observations of volcanic ash clouds in the 10–12 µm window using AVHRR/2 data, Int. J. Remote Sens., 10, 751–761, https://doi.org/10.1080/01431168908903916, 1989b.
Prata, A. J.: Volcanic information derived from satellite data: Algorithm Theoretical Basis Document I, Climate and Atmosphere Department, Norwegian Institute for Air Research (NILU), Kjeller, Norway, 162 pp., April 2011.
Pyle, D.: The thickness, volume and grainsize of tephra fall deposits, Bull. Volcanol., 51, 1–15, https://doi.org/10.1007/BF01086757, 1989.
Raga, G. B., Baumgardner, D., Ulke, A. G., Torres Brizuela, M., and Kucienska, B.: The environmental impact of the Puyehue-Cordon Caulle 2011 volcanic eruption on Buenos Aires, Nat. Hazards Earth Syst. Sci., 13, 2319–2330, https://doi.org/10.5194/nhess-13-2319-2013, 2013.
Rood, R. B.: Numerical advection algorithms and their role in atmospheric transport and chemistry models, Rev. Geophys., 25, 71–100, https://doi.org/10.1029/RG025i001p00071, 1987.
Rose, W. and Durant, A.: Fine ash content of explosive eruptions, J. Volcanol. Geoth. Res., 186, 32–39, https://doi.org/10.1016/j.jvolgeores.2009.01.010, 2009.
Schmid, R.: Descriptive nomenclature and classification of pyroclastic deposits and fragments, Geol. Rundschau, 70, 794–799, https://doi.org/10.1007/BF01822152, 1981.
Scollo, S., Del Carlo, P., and Coltelli, M.: Tephra fallout of 2001 Etna flank eruption: Analysis of the deposit and plume dispersion, J. Volcanol. Geoth. Res., 160, 147–164, https://doi.org/10.1016/j.jvolgeores.2006.09.007, 2007.
Scollo, S., Kahn, R. A., Nelson, D. L., Coltelli, M., Diner, D. J., Garay, M. J., and Realmuto, V. J.: MISR observations of Etna volcanic plumes, J. Geophys. Res.-Atmos., 117, 1–13, https://doi.org/10.1029/2011JD016625, 2012.
Self, S.: The effects and consequences of very large explosive volcanic eruptions, Philos. T. Roy. Soc. A, 364, 2073–2097, https://doi.org/10.1098/rsta.2006.1814, 2006.
Siebert, L., Simkin, T., and Kimberly, P.: Volcanoes of the world, 3rd Edn., University of California Press, Berkeley, 2010.
Simmons, A. J. and Burridge, D. M.: An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates, Mon. Weather Rev., 109, 758–766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2, 1981.
Sommer, B.: Ash Cloud from Chilean volcano entering New Zealand Airspace, Civ. Aviat. Auth. New Zeal., available at: https://www.caa.govt.nz/publicinfo/med_rel_Ash_Cloud.htm (last access 7 February 2017), 2011.
Spada, M., Jorba, O., Pérez, C., Janjic, Z., and Baldasano, J. M.: Modeling and evaluation of the global sea-salt aerosol distribution: Sensitivity to emission schemes and resolution effects at coastal/orographic sites, Atmos. Chem. Phys., 13, 11735–11755, https://doi.org/10.5194/acp-13-11735-2013, 2013.
Sparks, R. S. J., Bursik, M., Carey, S., Gilbert, J., Glaze, L., Sigurdsson, H., and Woods, A.: Volcanic Plumes, 1st Edn., John Wiley, Chichester, UK, 1997.
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013.
Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P.: Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: Implications on civil aviation, Bull. Volcanol., 74, 2205–2218, https://doi.org/10.1007/s00445-012-0656-3, 2012.
Suzuki, T.: A theoretical model for dispersion of tephra, in: In Arc Volcanism: Physics and Tectonics, Terra Scientific Publishing Company, Tokyo, 93–113, 1983.
Suzuki, Y. and Koyaguchi, T.: A three-dimensional numerical simulation of spreading umbrella clouds, J. Geophys. Res., 114, 1–18, https://doi.org/10.1029/2007JB005369, 2009.
Vukovic, A., Rajkovic, B., and Janjic, Z.: Land Ice Sea Surface Model: Short Description and Verification, in 2010 International Congress on Environmental Modelling and Software Modelling for Environment's Sake, Fifth Biennial Meeting, 5–8 July 2010, Ottawa, Canada, 2010.
Wessel, P. and Smith, W. H. F.: Free software helps map and display data, Eos T. Am. Geophys. Un., 72, 441–441, https://doi.org/10.1029/90EO00319, 1991.
Wilson, L. and Huang, T. C.: The influence of shape on the atmospheric settling velocity of volcanic ash particles, Earth Planet. Sc. Lett., 44, 311–324, https://doi.org/10.1016/0012-821X(79)90179-1, 1979.
Wilson, T., Stewart, C., Bickerton, H., Baxter, P., Outes, V., Villarosa, G., and Rovere, E.: Impacts of the June 2011 Puyehue-15 Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health, GNS Science Reports 2012/20, GNS Science, Lower Hutt, New Zealand, p. 88, 2013.
Woodhouse, M., Hogg, a. J., Phillips, J. C., and Sparks, R. S. J.: Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland, J. Geophys. Res.-Solid Ea., 118, 92–109, https://doi.org/10.1029/2012JB009592, 2013.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2895–2932, https://doi.org/10.5194/acp-8-2895-2008, 2008.
Zilitinkevich, S.: Bulk characteristics of turbulence in the atmospheric planetary boundary layer, Trudy GGO, 167, 49–52, 1965.
Special issue
Short summary
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and transport model developed at the BSC-CNS capable of forecasting the dispersal and deposition of volcanic ash. The forecast skills of the model have been validated and they improve on those from traditional operational offline (decoupled) models. The results support the use of online coupled models to aid civil aviation and emergency management during a crisis such as the 2010 eruption of Eyjafjallajökull.
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and...
Altmetrics
Final-revised paper
Preprint