Articles | Volume 17, issue 4
https://doi.org/10.5194/acp-17-2839-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-17-2839-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Xiaofan Xing
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Jianlei Lang
CORRESPONDING AUTHOR
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Dongsheng Chen
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Shuiyuan Cheng
CORRESPONDING AUTHOR
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Collaborative Innovation Center of Electric Vehicles, Beijing 100081,
China
Lin Wei
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing
University of Technology, Beijing 100124, China
College of Environmental & Energy Engineering, Beijing University
of Technology, Beijing 100124, China
Xiao Wei
Beijing Municipal Research Institute of Environmental Protection,
Beijing 100037, China
Chao Liu
Environmental Meteorological Center of China Meteorological
Administration, Beijing 100081, China
Related authors
Jianlei Lang, Zekang Yang, Ying Zhou, Chaoyu Wen, and Xiaoqing Cheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-494, https://doi.org/10.5194/essd-2024-494, 2024
Preprint under review for ESSD
Short summary
Short summary
This study established a four-dimensional (hourly, 0.03° × 0.03° × 34 height layers) aircraft emission inventory dataset in the Landing and takeoff cycle for China during 2019–2023, considering actual running time and flight trajectory. The dataset reflects unique horizontal and height spatial characteristics and hourly temporal variations of aircraft emissions and the impact of COVID-19 on the emissions, providing essential information for environmental analysis and policy decisions.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Xiaopu Lyu, Nan Wang, Hai Guo, Likun Xue, Fei Jiang, Yangzong Zeren, Hairong Cheng, Zhe Cai, Lihui Han, and Ying Zhou
Atmos. Chem. Phys., 19, 3025–3042, https://doi.org/10.5194/acp-19-3025-2019, https://doi.org/10.5194/acp-19-3025-2019, 2019
Short summary
Short summary
Through analyses on the synoptic systems, pollution characteristics of O3 precursors, and modeling of local O3 formation and processes influencing O3 level, we found that this O3 pollution event was induced by a uniform pressure field over the Shandong Peninsula and also aggravated by a low-pressure trough in the last few days. This finding indicated that the NCP might be an O3 source region, which exported photochemical pollution to the adjoining regions or even to the neighboring countries.
Jianlei Lang, Zekang Yang, Ying Zhou, Chaoyu Wen, and Xiaoqing Cheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-494, https://doi.org/10.5194/essd-2024-494, 2024
Preprint under review for ESSD
Short summary
Short summary
This study established a four-dimensional (hourly, 0.03° × 0.03° × 34 height layers) aircraft emission inventory dataset in the Landing and takeoff cycle for China during 2019–2023, considering actual running time and flight trajectory. The dataset reflects unique horizontal and height spatial characteristics and hourly temporal variations of aircraft emissions and the impact of COVID-19 on the emissions, providing essential information for environmental analysis and policy decisions.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Xiaopu Lyu, Nan Wang, Hai Guo, Likun Xue, Fei Jiang, Yangzong Zeren, Hairong Cheng, Zhe Cai, Lihui Han, and Ying Zhou
Atmos. Chem. Phys., 19, 3025–3042, https://doi.org/10.5194/acp-19-3025-2019, https://doi.org/10.5194/acp-19-3025-2019, 2019
Short summary
Short summary
Through analyses on the synoptic systems, pollution characteristics of O3 precursors, and modeling of local O3 formation and processes influencing O3 level, we found that this O3 pollution event was induced by a uniform pressure field over the Shandong Peninsula and also aggravated by a low-pressure trough in the last few days. This finding indicated that the NCP might be an O3 source region, which exported photochemical pollution to the adjoining regions or even to the neighboring countries.
Related subject area
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation of reactive nitrogen species promoted by iron ions through the photochemistry of a neonicotinoid insecticide
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes determined by the relative-rate technique
Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
Mechanistic insight into the kinetic fragmentation of norpinonic acid in the gas phase: an experimental and density functional theory (DFT) study
Temperature-dependent rate coefficients for the reaction of OH radicals with selected alkanes, aromatic compounds and monoterpenes
Exploring HONO production from particulate nitrate photolysis in Chinese representative regions: characteristics, influencing factors and environmental implications
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
On the potential use of highly oxygenated organic molecules (HOMs) as indicators for ozone formation sensitivity
Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance
Impact of temperature on the role of Criegee intermediates and peroxy radicals in dimer formation from β-pinene ozonolysis
Atmospheric impact of 2-methylpentanal emissions: kinetics, photochemistry, and formation of secondary pollutants
Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol
Technical note: Gas-phase nitrate radical generation via irradiation of aerated ceric ammonium nitrate mixtures
Direct probing of acylperoxy radicals during ozonolysis of α-pinene: constraints on radical chemistry and production of highly oxygenated organic molecules
Atmospheric photooxidation and ozonolysis of sabinene: reaction rate coefficients, product yields, and chemical budget of radicals
Compilation of Henry's law constants (version 5.0.0) for water as solvent
Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR
An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation
Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol
Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Evaluation of the daytime tropospheric loss of 2-methylbutanal
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China
NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical
Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024, https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Short summary
We report enhanced formation of nitrous acid (HONO) and NOx (NO + NO2) triggered by iron ions during photolysis of neonicotinoid insecticides at the air–water interface. This novel previously overlooked source of atmospheric HONO and NOx may be an important contribution to the global nitrogen cycle and affects atmospheric oxidizing capacity and climate change.
Yanyan Xin, Chengtang Liu, Xiaoxiu Lun, Shuyang Xie, Junfeng Liu, and Yujing Mu
Atmos. Chem. Phys., 24, 11409–11429, https://doi.org/10.5194/acp-24-11409-2024, https://doi.org/10.5194/acp-24-11409-2024, 2024
Short summary
Short summary
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes were determined using the multivariate relative-rate technique. A total of 25 relative-rate coefficients at room temperature and 24 Arrhenius expressions in the temperature range of 273–323 K were obtained, which expanded the data available.
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024, https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Short summary
∆3-carene is abundantly emitted from vegetation, but its atmospheric oxidation chemistry has received limited attention. We explored highly oxygenated organic molecule (HOM) formation from ∆3-carene ozonolysis in chambers and investigated the impact of temperature and relative humidity on HOM formation. Our findings provide new insights into ∆3-carene oxidation pathways and their potential to impact atmospheric aerosols.
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
Atmos. Chem. Phys., 24, 9309–9322, https://doi.org/10.5194/acp-24-9309-2024, https://doi.org/10.5194/acp-24-9309-2024, 2024
Short summary
Short summary
This paper outlines a unique scientific strategy for studying the reactivity of atmospherically relevant norpinonic acid (NA). The publication offers a new toolbox, illustrating NA's fragmentation and pattern of kinetic degradation leading to the formation of new small molecules. Furthermore, the research strategy presented here demonstrates how a mass spectrometer can function as a gas-phase reactor and the quantum chemistry method can serve as a reaction model builder.
Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2614, https://doi.org/10.5194/egusphere-2024-2614, 2024
Short summary
Short summary
This study reports temperature dependent reaction rate constants of the reaction of atmospherically relevant hydrocarbons from biogenic sources (MVK, monoterpenes) and anthropogenic sources (alkanes, aromatics). Measurements were done at atmospheric conditions (ambient pressure, temperature range) in air.
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2141, https://doi.org/10.5194/egusphere-2024-2141, 2024
Short summary
Short summary
The photolysis rate constants of particulate nitrate for HONO production (JHONO) with PM2.5 samples collected from five representative sites in China varied over a wide range. The parameterization equation between JHONO and OC/NO3− has been established and can be used to estimate JHONO in different environments. Our work provided an important reference for the research in other areas in the world with high proportion of organic components in aerosol samples, such as United States and Europe.
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024, https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary
Short summary
Recent studies on DMS have provided new challenges to our mechanistic understanding. Here we synthesise a number of recent studies to further develop and extend a state-of-the-art mechanism. Our new mechanism is shown to outperform all existing mechanisms when compared over a wide set of conditions. The development of an improved DMS mechanism will help lead the way to better the understanding the climate impacts of DMS emissions in past, present, and future atmospheric conditions.
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024, https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary
Short summary
Due to the intrinsic connection between the formation pathways of O3 and HOMs, the ratio of HOM dimers or non-nitrate monomers to HOM organic nitrates could be used to determine O3 formation regimes. Owing to the fast formation and short lifetimes of HOMs, HOM-based indicating ratios can describe O3 formation in real time. Despite the success of our approach in this simple laboratory system, applicability to the much more complex atmosphere remains to be determined.
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Theodore K. Koenig, Yanli Ge, Tong Zhu, Chunxiang Ye, Xinghua Qiu, and Qi Chen
Atmos. Chem. Phys., 24, 2099–2112, https://doi.org/10.5194/acp-24-2099-2024, https://doi.org/10.5194/acp-24-2099-2024, 2024
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) on product distribution and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
María Asensio, Sergio Blázquez, María Antiñolo, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 23, 14115–14126, https://doi.org/10.5194/acp-23-14115-2023, https://doi.org/10.5194/acp-23-14115-2023, 2023
Short summary
Short summary
In this work, we focus on the atmospheric chemistry and consequences for air quality of 2-methylpentanal (2MP), which is widely used as a flavoring ingredient and as an intermediate in the synthesis of dyes, resins, and pharmaceuticals. Measurements are presented on how fast 2MP is degraded by sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms and what products are generated. We conclude that 2MP will be degraded in a few hours, affecting local air quality.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
Rolf Sander
Atmos. Chem. Phys., 23, 10901–12440, https://doi.org/10.5194/acp-23-10901-2023, https://doi.org/10.5194/acp-23-10901-2023, 2023
Short summary
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023, https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Short summary
We observed a surprisingly similar set of oxidation product chemical formulas from limonene and α-pinene, including oligomers, formed under cool-flame (present experiments) and simulated atmospheric oxidation (literature). Data analysis indicated that a subset of chemical formulas is common to all experiments independently of experimental conditions. Also, this study indicates that many detected chemical formulas can be ascribed to an autooxidation reaction.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff
Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/acp-23-311-2023, https://doi.org/10.5194/acp-23-311-2023, 2023
Short summary
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022, https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary
Short summary
Landscape fires are a major source of greenhouse gases and aerosols, particularly in sub-tropical savannas. Stable carbon isotopes in emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to greenhouse gases and aerosols if the process is well understood. This helps us to link individual vegetation types to emissions, identify biomass burning emissions in the atmosphere, and improve the reconstruction of historic fire regimes.
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, https://doi.org/10.5194/acp-22-2689-2022, 2022
Short summary
Short summary
The diurnal atmospheric degradation of 2-methylbutanal, 2 MB, emitted by sources like vegetation or the poultry industry is evaluated in this work. Sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms initiate this degradation. Measurements of how fast 2 MB is degraded and what products are generated are presented. The lifetime of 2 MB is around 1 h at noon, when the OH reaction dominates. Thus, 2 MB will not be transported far, affecting only local air quality.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Mike J. Newland, Yangang Ren, Max R. McGillen, Lisa Michelat, Véronique Daële, and Abdelwahid Mellouki
Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, https://doi.org/10.5194/acp-22-1761-2022, 2022
Short summary
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000gb001382, 2001.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1, The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Bao, J. C., Yu, J. H., Feng, Z., Chen, B. H., Lei, C., and Yang, J.: Situation of Distribution and Utilization of Crop Straw Resources in Seven Western Provinces, Chinese J. Appl. Ecol., 25, 181–187, 2014 (in Chinese).
Bi, Y. Y.: Study on Straw Resources Evaluation and Utilization in China, PhD thesis, Chinese Academy of Agriculture Sciences, China, Beijing, 2010 (in Chinese).
CAAS (Chinese Academy of Agricultural Sciences): Agricultural Regionalization of China, China Agriculture Press, Beijing, 275 pp., 1984 (in Chinese).
Cao, G. L., Wang, F. C., and Wang, Y. Q.: Emission inventory of TSP, PM10 and PM2.5 emissions from biomass burning in China, The Chinese Journal of Process Engineering, 4, 700–704, 2004 (in Chinese).
Cao, G. L., Zhang, X. Y., Wang, D., and Deng, F. C.: Inventory of Atmospheric Pollutants Discharged from Biomass Burning in China Continent, China Environ. Sci., 25, 389–393, 2005 (in Chinese).
Cao, G. L., Zhang, X. Y., Gong, S. L., and Zheng, F. C.: Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning, J. Environ. Sci., 20, 50–55, https://doi.org/10.1016/s1001-0742(08)60007-8, 2008.
Chang, C., Tian, J. Q., Feng, D. C., Jin, X. X., Xia, S. Y., Zhang, Y., Lu, X. Q., Lv, D. M., and Yu, G. J.: Straw Resources and Problems and Measures of Straw Returning to Field in Liaoning Province, Liaoning Agricultural Sciences, 6, 71–73, 2012 (in Chinese).
Chen, C., Wang, H. H., Zhang, W., Hu, D., Chen, L., and Wang, X. J.: High-resolution inventory of mercury emissions from biomass burning in China for 2000–2010 and a projection for 2020, J. Geophys. Res.-Atmos., 118, 12248–12256, https://doi.org/10.1002/2013jd019734, 2013.
Cheng, Z., Wang, S., Fu, X., Watson, J. G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J. C., and Hao, J.: Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573–4585, https://doi.org/10.5194/acp-14-4573-2014, 2014.
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W.: Biomass Burning as a Source of Atmospheric Gases CO, H2, N2O, NO, CH3CL and COS, Nature, 282, 253–256, https://doi.org/10.1038/282253a0, 1979.
Donohoe, M. and Garner, E. P.: Health Effects of Indoor Air Pollution from Biomass Cooking Stoves, Medscape, New York, available at: http://www.medscape.com/viewarticle/572069 (last access: 15 February 2017), 2008.
EOCAIY: China Animal Industry Yearbook 2013, China Agriculture Press, Beijing, 2013 (in Chinese).
EPD: Guide for compiling atmospheric pollutant emission inventory for biomass burning, Environmental Protection Department, available at: http://www.zhb.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm (last access: 15 February 2017), 2014 (in Chinese).
Fang, F., Li, X., Shi, Z. L., Wang, F., Chang, Z. Z., Zhang, S., Shun, R. H., Bao, Z., and Qiu, L.: Analysis on Distribution and Use Structure of Crop Straw Resources in Huang–Huai–Hai Plain of China, Transactions of the CSAE, 31, 228–234, 2015 (in Chinese).
Fang, J. Y., Liu, G. H., and Xu, S. L.: Biomass and net production of forest vegetation in China, Acta. Eco. Sin., 16, 497–508, 1996 (in Chinese).
Fang, J. Y., Wang, G. G., Liu, G. H., and Xu, S. L.: Forest biomass of China: An estimate based on the biomass-volume relationship, Ecol. Appl., 8, 1084–1091, https://doi.org/10.2307/2640963, 1998.
Fernandez, A., Davis, S. B., Wendt, J. O. L., Cenni, R., Young, R. S., and Witten, M. L.: Public health – Particulate emission from biomass combustion, Nature, 409, 998–998, https://doi.org/10.1038/35059169, 2001.
Friedli, H. R., Radke, L. F., Prescott, R., Hobbs, P. V., and Sinha, P.: Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon and atmospheric mercury budget estimates, Global Biogeochem. Cy., 17, 1039, https://doi.org/10.1029/2002GB001972, 2003.
Fu, J. Y., Jiang, D., and Huang, Y. H.: PopulationGrid_China, Global Change Research Data Publishing & Repository, https://doi.org/10.3974/geodb.2014.01.06.V1, 2014 (in Chinese).
Fu, X., Wang, S. X., Zhao, B., Xing, J., Cheng, Z., Liu, H., and Hao, J. M.: Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China, Atmos. Environ., 70, 39–50, https://doi.org/10.1016/j.atmosenv.2012.12.034, 2013.
Fullerton, D. G., Bruce, N., and Gordon, S. B.: Indoor air pollution from biomass fuel smoke is a major health concern in the developing world, T. Roy. Soc. Trop. Med. H., 102, 843–851, https://doi.org/10.1016/j.trstmh.2008.05.028, 2008.
Gao, L. W., Ma, L., Zhang, W. F., Wang, F. H., Ma, W. Q., and Zhang, F. S.: Estimation of Nutrient Resource Quantity of Crop Straw and Its Utilization Situation in China, Transactions of the CSAE, 25, 173–179, 2009 (in Chinese).
Gao, X. Z., Ma, W. Q., Ma, C. B., Zhang, F. S., and Wang, Y. H.: Analysis on the Current Status of Utilization of Crop Straw in China, Journal of Huazhong Agricultural University, 21, 242–247, 2002 (in Chinese).
Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, 7, 1171–1186, https://doi.org/10.5194/bg-7-1171-2010, 2010.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Han, L. J., Yan, Q. J., Liu, X. Y., and Hu, J. Y.: Straw Resources and Their Utilization in China, Transactions of the CSAE, 18, 87–91, 2002 (in Chinese).
He, M., Zheng, J. Y., Yin, S. S., and Zhang, Y. Y.: Trends, temporal and spatial characteristics, and uncertainties in biomass burning emissions in the Pearl River Delta, China, Atmos. Environ., 45, 4051–4059, https://doi.org/10.1016/j.atmosenv.2011.04.016, 2011.
He, M., Wang, X. R., Han, L., Feng, X. Q., and Mao, X.: Emission Inventory of Crop Residues Field Burning and Its Temporal and Spatial Distribution in Sichuan Province, Environ. Sci., 36, 1208–1216, 2015 (in Chinese).
Hong, J. L., Ren, L. J., Hong, J. M., and Xu, C. Q.: Environmental impact assessment of corn straw utilization in China, J. Clean. Prod., 112, 1700–1708, https://doi.org/10.1016/j.jclepro.2015.02.081, 2016.
Hou, X. Q., Zhang, H. T., and Yang, J. X.: Study in Crop Straw Comprehensive Utilization Mode of Xinjiang, Master thesis, Xinjiang Agriculture University, China, Xinjiang, 2013 (in Chinese).
Hu, H. F., Wang, Z. H., Liu, G. H., and Fu, B. J.: Vegetation carbon storage of major shrublands in China, Chinese Journal of Plant Ecology, 30, 539–544, 2006 (in Chinese).
Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., Streets, D. G., Wang, Y. J., Zhang, G. F., and Chen, Y. R.: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China, Atmos. Chem. Phys., 11, 4105–4120, https://doi.org/10.5194/acp-11-4105-2011, 2011.
Huang, G. B.: Evaluation and Trend Analysis of Crop Straw Comprehensive Utilization in Fujian Province, China Rural Science & Technology, 10, 66–67, 2014 (in Chinese).
Huang, X., Song, Y., Li, M. M., Li, J. F., and Zhu, T.: Harvest season, high polluted season in East China, Environ. Res. Lett., 7, 044033, https://doi.org/10.1088/1748-9326/7/4/044033, 2012a.
Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, H. S.: A high-resolution ammonia emission inventory in China, Global Biogeochem. Cy., 26, GB1030, https://doi.org/10.1029/2011gb004161, 2012b.
Huang, X., Li, M. M., Hans, R. F., Song, Y., Di, C., and Lei, Z.: Mercury Emissions from Biomass Burning in China, Environ. Sci. Technol., 45, 9442–9448, https://doi.org/10.1021/es202224e, 2012c.
Huang, X., Li, M. M., Li, J. F., and Song, Y.: A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products, Atmos. Environ., 50, 9–15, https://doi.org/10.1016/j.atmosenv.2012.01.017, 2012d.
Hurst, D. F., Griffith, D. W. T., and Cook, G. D.: Trace gas emissions from biomass burning in tropical Australian savannas, J. Geophys. Res., 99, 16441–16456, https://doi.org/10.1029/94JD00670, 1994.
Ito, A. and Penner, J. E.: Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res.-Atmos., 109, D14S05, https://doi.org/10.1029/2003jd004423, 2004.
IPCC (Intergovernmental Panel on Climate Change): Fifth Assessment Report, Climate Change, the Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the the Intergovernment Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jiang, R. and Bell, M.: The Characterization and Health Effects of Indoor Particulate Matter Pollution from Biomass Burning in Northeastern China, 20th Annual Conference of the International-Society-for-Environmental-Epidemiology, Pasadena, CA, 19, S89–S90, 2008.
Kanabkaew, T. and Nguyen, T. K. O.: Development of Spatial and Temporal Emission Inventory for Crop Residue Field Burning, Environ. Model. Assess., 16, 453–464, https://doi.org/10.1007/s10666-010-9244-0, 2011.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.
Kasischke, E. S., Stocks, B. J., O'Neill, K., French, N. H. F., and Bourgeau-Chavez, L. L.: Direct effect of fire on the boreal forest carbon budget, in Biomass Burning and Its Inter-Relationships with the Climate System, 51–68, Dordrecht, Norwell, Mass, 2000.
Kaufman, Y. J. and Fraser, R. S.: The effect of smoke particles on clouds and climate forcing, Science, 277, 1636–1639, https://doi.org/10.1126/science.277.5332.1636, 1997.
Koppmann, R., von Czapiewski, K., and Reid, J. S.: A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds, Atmos. Chem. Phys. Discuss., 5, 10455–10516, https://doi.org/10.5194/acpd-5-10455-2005, 2005.
Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R.: Vegetation fire emissions and their impact on air pollution and climate, Atmos. Environ., 43, 107–116, https://doi.org/10.1016/j.atmosenv.2008.09.047, 2009.
Li, Q., Jiang, J. K., Cai, S. Y., Zhou, W., Wang, S. X., Duan, L., and Hao, J. M.: Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies, Environ. Sci. Technol., 3, 98–103, https://doi.org/10.1021/acs.estlett.6b00013, 2016.
Li, Q. J.: Study on the Comprehensive Utilization of Straw in Guangxi, Master thesis, College of Agriculture, China, Guangxi, 2013 (in Chinese).
Li, G. J.: Status of Anda Area Livestock Manure Handling and Effective Utilization, Veterinary Ophthalmology, 12, 25–17, 2007 (in Chinese).
Li, G. J. and Zhao, R. H.: The effective utilization and treatment of livestock excrement in Anda area, Contemporary Animal Husbandry, 3, 43–45, 2008 (in Chinese).
Li, J. F., Song, Y., Li, M. M., and Huang, X.: Estimating Air Pollutants Emissions from Open Burning of Crop Residues in Jianghan Plain, Acta Scientiarum Naturalium Universitatis Pekinensis, 51, 647–656, 2015 (in Chinese).
Li, M., He, W. Y., Li, Z. Y., and Zheng, R.: Study on the Distribution Characteristics and Utilization of Crop Straws in Chongqing City, South China Agriculture, 7, 32–34, 2013 (in Chinese).
Li, X. H., Duan, L., Wang, S. X., Duan, J. C., Guo, X. M., Yi, H. H., Hu, J. N., Li, C., and Hao, J. M.: Emission characteristics of particulate matter from rural household biofuel combustion in China, Energ. Fuel., 21, 845–851, https://doi.org/10.1021/ef060150g, 2007a.
Li, X. H., Wang, S. X., Duan, L., Hao, J., Li, C., Chen, Y. S., and Yang, L.: Particulate and trace gas emissions from open burning of wheat straw and corn stover in China, Environ. Sci. Technol., 41, 6052–6058, https://doi.org/10.1021/es0705137, 2007b.
Li, X. H., Wang, S. X., Duan, L., Hao, J. M., and Nie, Y. F.: Carbonaceous Aerosol Emissions from Household Biofuel Combustion in China, Environ. Sci. Technol., 43, 6076–6081, https://doi.org/10.1021/es803330j, 2009.
Liu, G. and Shen, L.: Quantitative assessment of biomass energy and its geographical distribution in China, Journal of Natural Resources, 22, 9–19, 2007 (in Chinese).
Liu, H. Y., Zhou, J. G., Zhou, P., Xiao, H. A., and Wu, J. S.: Analyze Regional Characteristic and Influencing Factors of Different Crop Straw Treatments in South Central of China, Quaternary Sci., 34, 848–855, 2014 (in Chinese).
Liu, P., Na, W., Wang, Q. L., Wang, X. M., Zhang, W. D., and Wang, X. F.: Analysis on Evaluation and Energy Utilization of Main Crop Stalk Resource in Jilin Province, Journal of Jilin Agricultural Sciences, 35, 58–64, 2010 (in Chinese).
Liu, Y., Shao, M., Fu, L. L., Lu, S. H., Zeng, L. M., and Tang, D. G.: Source profiles of volatile organic compounds (NMVOCs) measured in China: Part I, Atmos. Environ., 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.
Liu, Z. R.: Analysis of Beijing rural life energy consumption and study on the policies, Master thesis, Southwest University, China, Chongqing, 2012 (in Chinese).
Lu, B., Kong, S. F., Han, B., Wang, X. Y., and Bai, Z. P.: Inventory of Atmospheric Pollutants Discharged from Biomass Burning in China Continent in 2007, China Environ. Sci., 31, 186–194, 2011 (in Chinese).
MA: Investigation and Evaluation Report on Crop Straw Resources in China, Ministry of Agriculture, available at: http://www.kjs.moa.gov.cn/ (last access: 15 February 2017), 2011 (in Chinese).
McMeeking, G. R.: The optical, chemical, and physical properties of aerosols and gases emitted by the laboratory combustion of wildland fuels, PhD Dissertation, Department of Atmospheric Sciences, Colorado State University, 109–113, 2008.
MEP: Measures of Prohibiting Straw Burning and Comprehensive Utilization Management, Ministry of Environmental Protection of the People's Republic of China, Beijing, 1999 (in Chinese).
Michel, C., Liousse, C., Grégoire, J. M., Tansey, K., Carmichael, G. R., and Woo, J. H.: Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns, J. Geophys. Res., 110, 1637–1639, https://doi.org/10.1029/2004JD005461, 2005.
MOA (Ministry of Agriculture of the People's Republic of China): Database of Farming Season, Ministry of Agriculture of the People's Republic of China, available at: http://www.moa.gov.cn/ (last access: 15 February 2017), 2000 (in Chinese).
NATESC (National Agricultural Technology Extension Service Center): China Organic Fertilizer Resources, China Agriculture Press, Beijing, 1999 (in Chinese).
NBSC (National Bureau of Statistics of China): China Statistical Yearbook 1999–2008, China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/ndsj/ (last access: 15 February 2017), 1999–2008a (in Chinese).
NBSC (National Bureau of Statistics of China): China Energy Statistical Yearbook 1999–2008, China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/tjcbw/ (last access: 15 February 2017), 1999–2008b (in Chinese).
NBSC (National Bureau of Statistics of China): China Energy Statistical Yearbook 2009–2015, China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/tjcbw/ (last access: 15 February 2017), 2009–2015 (in Chinese).
NBSC (National Bureau of Statistics of China): China County Statistical Yearbook 2013, China Statistics Press, Beijing, 2013a (in Chinese).
NBSC (National Bureau of Statistics of China): China Statistical Yearbook for Regional Economy 2013, China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/tjcbw/ (last access: 15 February 2017), 2013b (in Chinese).
NBSC (National Bureau of Statistics of China): China Statistical Yearbook 2013, China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/ndsj/ (last access: 15 February 2017), 2013c (in Chinese).
NDRC: National utilization and burning of straw in 2012, National Development and Reform Commission, Beijing, 2014 (in Chinese).
Nelson, P. F., Morrison, A. L., Malfroy, H. J., Cope, M., Lee, S., Hibberd, M. L., Meyer, C. P., and McGregor, J.: Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources, Atmos. Environ., 62, 291–302, https://doi.org/10.1016/j.atmosenv.2012.07.067, 2012.
Ni, H. Y., Han, Y. M., Cao, J. J., Chen, L. W. A., Tian, J., Wang, X. L., Chow, J. C., Watson, J. G., Wang, Q. Y., Wang, P., Li, H., and Huang, R. J.: Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China, Atmos. Environ., 123, 399–406, https://doi.org/10.1016/j.atmosenv.2015.05.007, 2015.
OECD (Organization for Economic Co-operation and Development): IEA Statistics 2012, Organization for Economic Co-operation and Development Publishing, Pairs, 2012.
Penner, J. E., Dickinson, R. E., and Oneill, C. A.: Effects of Aerosol from Biomass Burning on the Global Radiation Budget, Science, 256, 1432–1434, https://doi.org/10.1126/science.256.5062.1432, 1992.
Pu, S. L., Fang, J. Y., and He, J. S.: Spatial distribution of grassland biomass in China, Acta. Phyt. Sci., 28, 491–498, 2004 (in Chinese).
Qin, D. D. and Ge, L.: Study on the comprehensive utilization of straw in Anhui Province, Modern Agricultural Technology, 8, 264–265, 2012 (in Chinese).
Ran, Y. H., Li, X., and Lu, L.: Evaluation of four remote sensing based land cover products over China, Int. J. Remote Sens., 31, 391–401, https://doi.org/10.1080/01431160902893451, 2010.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide emissions from India. Part II – biomass combustion, Atmos. Environ., 36, 699–712, https://doi.org/10.1016/s1352-2310(01)00464-2, 2002.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Shi, Y. S. and Yamaguchi, Y.: A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001–2010, Atmos. Environ., 98, 8–16, https://doi.org/10.1016/j.atmosenv.2014.08.050, 2014.
Shi, Y. S., Matsunaga, T., and Yamaguchi, Y.: High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions, Environ. Sci. Technol., 49, 10806–10814, https://doi.org/10.1021/acs.est.5b01598, 2015.
Shon, Z. H.: Long-term variations in PM2.5 emission from open biomass burning in Northeast Asia derived from satellite-derived data for 2000–2013, Atmos. Environ., 107, 342–350, https://doi.org/10.1016/j.atmosenv.2015.02.038, 2015.
Song, Y., Liu, B., Miao, W., Chang, D., and Zhang, Y.: Spatiotemporal variation in non-agricultural open fire emissions in China from 2000 to 2007, Global Biogeochem. Cy., 23, GB2008, https://doi.org/10.1029/2008GB003344, 2009.
Song, Y., Shao, M., and Liu, Y.: Source apportionment of ambient volatile organic compounds in Beijing, Environ. Sci. Technol., 41, 4348–4353, https://doi.org/10.1021/es0625982, 2007.
Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., and Bo, Y. Y.: Black carbon emissions in China, Atmos. Environ., 35, 4281–4296, https://doi.org/10.1016/S1352-2310(01)00179-0, 2001.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cy., 17, 1099, https://doi.org/10.1029/2003GB002040, 2003.
Streets, D. G., Hao, J. M., Wu, Y., Jiang, J. K., Chan, M., Tian, H. Z., and Feng, X. B.: Anthropogenic mercury emissions in China, Atmos. Environ., 39, 7789–7806, https://doi.org/10.1016/j.atmosenv.2005.08.029, 2005.
Sun, J. F., Peng, H. Y., Chen, J. M., Wang, X. M., Wei, M., Li, W. J., Yang, L. X., Zhang, Q. Z., Wang, W. X., and Mellouki, A.: An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013, J. Cleaner Prod., 112, 2625–2631, https://doi.org/10.1016/j.jclepro.2015.09.112, 2016.
Tang, X. B., Huang, C., Lou, S. R., Qiao, L. P., Wang, H. L., Zhou, M., Chen, M. H., Chen, C. H., Wang, Q., Li, G. L., Li, L., Huang, H. Y., and Zhang, G. F.: Emission Factors and PM Chemical Composition Study of Biomass Burning in the Yangtze River Delta Region, Environ. Sci., 35, 1623–1632, 2014 (in Chinese).
Tian, H. Z., Hao, J. M., Lu, Y. Q., and Zhou, Z. P.: Evaluation of SO2 and NOx Emissions Resulted from Biomass Fuels Utilization in China, Acta Scientiae Circumstantiae, 22, 204–208, 2002 (in Chinese).
Tian, H. Z., Zhao, D., and Wang, Y.: Emission Inventories of Atmospheric Pollutants Discharged from Biomass Burning in China, Acta Scientiae Circumstantiae, 31, 349–357, 2011 (in Chinese).
Tian, Y. S.: Current Development Situation and Trend of China's Rural Energy in 2013, Energy of China, 36, 10–14, 2014 (in Chinese).
Turn, S. Q., Jenkins, B. M., Chow, J. C., Pritchett, L. C., Campbell, D., Cahill, T., and Whalen, S. A.: Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels, J. Geophys. Res.-Atmos., 102, 3683–3699, https://doi.org/10.1029/96jd02979, 1997.
US EPA (US Environmental Protection Agency): Compilation of air pollutant emission Factors, AP-42, 5th Edn., Washington, DC, 2002.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707-11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Wang, J. J.: The Statistical Analysis of Beijings Rural Energy Consumption, Master thesis, Hebei University, China, Hebei, 2010 (in Chinese).
Wang, S. X. and Zhang, C. Y.: Spatial and Temporal Distribution of Air Pollutant Emissions from Open Burning of Crop Residues in China, Sciencepaper Online, 3, 329–333, 2008 (in Chinese).
Wang, S. X., Wei, W., Du, L., Li, G. H., and Hao, J. M.: Characteristics of gaseous pollutants from biofuel-stoves in rural China, Atmos. Environ., 43, 4148–4154, https://doi.org/10.1016/j.atmosenv.2009.05.040, 2009.
Wang, Y. and Zhao, Q. R.: Current situation and measures of Jiangsu straw utilization, Jiangsu Agricultural Economy, 31, 66–67, 2011 (in Chinese).
Watson, J. G., Chow, J. C., and Houck, J. E.: PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995, Chemosphere, 43, 1141–1151, https://doi.org/10.1016/s0045-6535(00)00171-5, 2001.
Wei, W., Wang, S. X., Chatani, S., Klimont, Z., Cofala, J., and Hao, J. M.: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China, Atmos. Environ., 42, 4976–4988, https://doi.org/10.1016/j.atmosenv.2008.02.044, 2008.
Xu, P., Liao, Y. J., Lin, Y. H., Zhao, C. X., Yan, C. H., Cao, M. N., Wang, G. S., and Luan, S. J.: High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008, Atmos. Chem. Phys., 16, 1207–1218, https://doi.org/10.5194/acp-16-1207-2016, 2016.
Yan, W. L., Liu, D. Y., Sun Y., Wei, J. S., and Pu, M. J.: Analysis of the Sustained Fog and Haze Event Resulting from Crop-Burning Residue in Jiangsu Province, Climatic and Environmental Research, 19, 237–247, 2014 (in Chinese).
Yan, X. Y., Ohara, T., and Akimoto, H.: Bottom-up estimate of biomass burning in mainland China, Atmos. Environ., 40, 5262–5273, https://doi.org/10.1016/j.atmosenv.2006.04.040, 2006.
Zha, S. P., Zhang, S. Q., Cheng, T. T., Chen, J. M., Huang, G. H., Li, X., and Wang, Q. F.: Agricultural Fires and Their Potential Impacts on Regional Air Quality over China, Aerosol and Air Quality Research, 13, 992–1001, https://doi.org/10.4209/aaqr.2012.10.0277, 2013.
Zhang, F. C. and Zhu, Z. H.: Harvest Index of Crops in China, Scientia Agricultura Sinica, 23, 83–87, 1990 (in Chinese).
Zhang, H. F., Ye, X. N., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., and Zhang, R. Y.: A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory, Atmos. Environ. 42, 8432–8441, https://doi.org/10.1016/j.atmosenv.2008.08.015, 2008.
Zhang, L. B., Liu, Y. Q., and Hao, L.: Contributions of open crop straw burning emissions to PM2.5 concentrations in China, Environ. Res. Lett., 11, 014014, https://doi.org/10.1088/1748-9326/11/1/014014, 2016.
Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M. A. K., Rasmussen, R. A., and Thorneloe, S. A.: Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors, Atmos. Environ., 34, 4537–4549, https://doi.org/10.1016/s1352-2310(99)00450-1, 2000.
Zhang, Q., Klimont, Z., Streets, D. G., Huo, H., and He, K. B.: Emission model of anthropogenic sources and estimation of emission inventory in 2001, China, Prog. Nat. Sci., 16, 223–231, 2006 (in Chinese).
Zhang, W., Wei, W., Hu, D., Zhu, Y., and Wane, X. J.: Emission of Speciated Mercury from Residential Biomass Fuel Combustion in China, Energ. Fuel., 27, 6792–6800, https://doi.org/10.1021/ef401564r, 2013.
Zhang, Y. R., Li, Y., Jiang, T. M., and Zhang, W. A.: Distribution and Comprehensive Utilization of Straw Resources of Main Crops in Guizhou, Guizhou Agricultural Sciences, 3, 262–267, 2015 (in Chinese).
Zhang, Y. S., Shao, M., Lin, Y., Luan, S. J., Mao, N., Chen, W. T., and Wang, M.: Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China, Atmos. Environ., 76, 189–199, https://doi.org/10.1016/j.atmosenv.2012.05.055, 2013.
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/10.5194/acp-12-481-2012, 2012.
Zhao, C.: Utilization Status of Crop Straws and Sustainable Development in Beijing, J. Agr., 5, 42–46, 2015 (in Chinese).
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.
Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, 2014.
Zheng, J. Y., Zhang, L. J., Che, W. W., Zheng, Z. Y., and Yin, S. S.: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment, Atmos. Environ., 43, 5112–5122, https://doi.org/10.1016/j.atmosenv.2009.04.060, 2009.
Zhou, Y., Cheng, S.Y., Lang, J. L., Chen, D. S., Zhao, B. B., Liu, C., Xu, R. and Li, T. T.: A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing–Tianjin–Hebei (BTH) region, China. Atmos. Environ., 106, 305–317, https://doi.org/10.1016/j.atmosenv.2015.01.069, 2015.
Zong, Z., Wang, X., Tian, C., Chen, Y., Qu, L., Ji, L., Zhi, G., Li, J., and Zhang, G.: Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning, Atmos. Chem. Phys., 16, 11249–11265, https://doi.org/10.5194/acp-16-11249-2016, 2016.
Short summary
A 1 km gridded and comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors. The detailed emission inventory could provide useful information for air-quality modelling and supports the development of appropriate pollution-control strategies.
A 1 km gridded and comprehensive biomass burning emission inventory including domestic and...
Special issue
Altmetrics
Final-revised paper
Preprint