Articles | Volume 17, issue 20
Atmos. Chem. Phys., 17, 12405–12420, 2017
https://doi.org/10.5194/acp-17-12405-2017
Atmos. Chem. Phys., 17, 12405–12420, 2017
https://doi.org/10.5194/acp-17-12405-2017
Research article
19 Oct 2017
Research article | 19 Oct 2017

Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

Emmaline Atherton et al.

Related authors

Characterization of atmospheric methane release in the outer Mackenzie River Delta from biogenic and thermogenic sources
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
EGUsphere, https://doi.org/10.5194/egusphere-2022-549,https://doi.org/10.5194/egusphere-2022-549, 2022
Short summary
Methane flux estimates from continuous atmospheric measurements and surface-water observations in the northern Labrador Sea and Baffin Bay
Judith Vogt, David Risk, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
EGUsphere, https://doi.org/10.5194/egusphere-2022-545,https://doi.org/10.5194/egusphere-2022-545, 2022
Short summary
Using computational fluid dynamics and field experiments to improve vehicle-based wind measurements for environmental monitoring
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020,https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Technical Note: Isotopic corrections for the radiocarbon composition of CO2 in the soil gas environment must account for diffusion and diffusive mixing
Jocelyn E. Egan, David R. Bowling, and David A. Risk
Biogeosciences, 16, 3197–3205, https://doi.org/10.5194/bg-16-3197-2019,https://doi.org/10.5194/bg-16-3197-2019, 2019
Short summary
Explaining CO2 fluctuations observed in snowpacks
Laura Graham and David Risk
Biogeosciences, 15, 847–859, https://doi.org/10.5194/bg-15-847-2018,https://doi.org/10.5194/bg-15-847-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Temporal variability of tropospheric ozone and ozone profiles in the Korean Peninsula during the East Asian summer monsoon: insights from multiple measurements and reanalysis datasets
Juseon Bak, Eun-Ji Song, Hyo-Jung Lee, Xiong Liu, Ja-Ho Koo, Joowan Kim, Wonbae Jeon, Jae-Hwan Kim, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 14177–14187, https://doi.org/10.5194/acp-22-14177-2022,https://doi.org/10.5194/acp-22-14177-2022, 2022
Short summary
Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022,https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022,https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19)
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022,https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
How adequately are elevated moist layers represented in reanalysis and satellite observations?
Marc Prange, Stefan A. Buehler, and Manfred Brath
EGUsphere, https://doi.org/10.5194/egusphere-2022-755,https://doi.org/10.5194/egusphere-2022-755, 2022
Short summary

Cited articles

Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., and Seinfeld, J. H.: Measurements of methane emissions at natural gas production sites in the United States, P. Natl. Acad. Sci. USA, 110, 17768–17773, https://doi.org/10.1073/pnas.1304880110, 2013.
Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., and Hamburg, S. P.: Greater focus needed on methane leakage from natural gas infrastructure, P. Natl. Acad. Sci. USA, 109, 6435–6440, https://doi.org/10.1073/pnas.1202407109, 2012.
BC Oil and Gas Commission: Montney Formation Play Atlas NEBC, available at: www.bcogc.ca/montney-formation-play-atlas-nebc, last access: 1 August 2016, 2012.
BC Oil and Gas Commission: Energy Briefing Note: The Ultimate Potential for Unconventional Petroleum from the Montney Formation of British Columbia and Alberta, available at: www.neb-one.gc.ca/nrgsttstc/ntrlgs/rprt/ltmtptntlmntnyfrmtn2013/ltmtptntlmntnyfrmtn2013-eng.pdf, last access: 1 August 2016, 2013.
BC Oil and Gas Commission: Hydrocarbon and By-Product Reserves in British Columbia, available at: www.bcogc.ca/node/12952/download, last access: 1 August 2016, 2014.
Download
Short summary
Methane is a potent greenhouse gas, and leaks from natural gas infrastructure are thought to be a significant emission source. We used a mobile survey method to measure GHGs near Canadian infrastructure. Our results show that ~ 47 % of active wells were emitting. Abandoned and aging wells were also associated with emissions. We estimate methane emissions from this development are just over 111 Mt year−1, which is more than previous government estimates, but less than similar studies in the US.
Altmetrics
Final-revised paper
Preprint