Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5315-2016
https://doi.org/10.5194/acp-16-5315-2016
Research article
 | 
28 Apr 2016
Research article |  | 28 Apr 2016

Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

Damien Johann Bolinius, Annika Jahnke, and Matthew MacLeod

Related authors

Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020,https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024,https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Joseph Seitz, Shiyuan Zhong, Joseph J. Charney, Warren E. Heilman, Kenneth L. Clark, Xindi Bian, Nicholas S. Skowronski, Michael R. Gallagher, Matthew Patterson, Jason Cole, Michael T. Kiefer, Rory Hadden, and Eric Mueller
Atmos. Chem. Phys., 24, 1119–1142, https://doi.org/10.5194/acp-24-1119-2024,https://doi.org/10.5194/acp-24-1119-2024, 2024
Short summary
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023,https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Six years of continuous carbon isotope composition measurements of methane in Heidelberg (Germany) – a study of source contributions and comparison to emission inventories
Antje Hoheisel and Martina Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2023-2079,https://doi.org/10.5194/egusphere-2023-2079, 2023
Short summary
Ozone in the boreal forest in the Alberta Oil Sands Region
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023,https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary

Cited articles

Aubinet, M.: Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem, Ecol. Appl., 18, 1368–1378, https://doi.org/10.1890/06-1336.1, 2008.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331, https://doi.org/10.2307/1941631, 1988.
Businger, J. A.: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Clim. Appl. Meteorol., 25, 1100–1124, https://doi.org/10.1175/1520-0450(1986)025<1100:EOTAWW>2.0.CO;2, 1986.
Businger, J. A. and Oncley, S. P.: Flux measurement with conditional sampling, J. Atmos. Ocean. Tech., 7, 349–352, https://doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2, 1990.
Choi, S.-D., Staebler, R. M., Li, H., Su, Y., Gevao, B., Harner, T., and Wania, F.: Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy, Atmos. Chem. Phys., 8, 4105–4113, https://doi.org/10.5194/acp-8-4105-2008, 2008.
Download
Short summary
Our article confronts the question of how to accurately measure fluxes of volatile chemicals between the earth's surface and the atmosphere when the possibility of using high-frequency analyzers, such as with eddy covariance techniques, is non-existent. By subsampling and averaging publically available data from FLUXNET and applying the modified Bowen ratio method (MBR), we have determined that the MBR can work when using prolonged sampling times and single average estimates of eddy diffusivity.
Altmetrics
Final-revised paper
Preprint