Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5283-2016
https://doi.org/10.5194/acp-16-5283-2016
Research article
 | 
28 Apr 2016
Research article |  | 28 Apr 2016

NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

Fei Liu, Steffen Beirle, Qiang Zhang, Steffen Dörner, Kebin He, and Thomas Wagner

Related authors

Estimating surface sulfur dioxide concentrations from satellite data: Using chemical transport models vs. machine learning
Zachary Watson, Can Li, Fei Liu, Sean W. Freeman, Huanxin Zhang, Jun Wang, and Shan-Hu Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-1735,https://doi.org/10.5194/egusphere-2025-1735, 2025
Short summary
High-resolution mapping of nitrogen oxide emissions in large US cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024,https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Detecting ship-produced NO2 plumes and shipping routes in TROPOMI data with a deep learning model
Tianle Yuan, Fei Liu, Lok N. Lamsal, and Hua Song
EGUsphere, https://doi.org/10.22541/essoar.168771101.14987378/v1,https://doi.org/10.22541/essoar.168771101.14987378/v1, 2023
Preprint archived
Short summary
A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022,https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Quantifying urban, industrial, and background changes in NO2 during the COVID-19 lockdown period based on TROPOMI satellite observations
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022,https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying biases in TROPESS AIRS, CrIS, and joint AIRS+OMI tropospheric ozone products using ozonesondes
Elyse A. Pennington, Gregory B. Osterman, Vivienne H. Payne, Kazuyuki Miyazaki, Kevin W. Bowman, and Jessica L. Neu
Atmos. Chem. Phys., 25, 8533–8552, https://doi.org/10.5194/acp-25-8533-2025,https://doi.org/10.5194/acp-25-8533-2025, 2025
Short summary
State-wide California 2020 carbon dioxide budget estimated with OCO-2 and OCO-3 satellite data
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yu Yan Cui, Dien Wu, Alex Turner, and Marc Fischer
Atmos. Chem. Phys., 25, 8475–8492, https://doi.org/10.5194/acp-25-8475-2025,https://doi.org/10.5194/acp-25-8475-2025, 2025
Short summary
Satellite detection of NO2 distributions using TROPOMI and TEMPO and comparison with ground-based concentration measurements
Summer Acker, Tracey Holloway, and Monica Harkey
Atmos. Chem. Phys., 25, 8271–8288, https://doi.org/10.5194/acp-25-8271-2025,https://doi.org/10.5194/acp-25-8271-2025, 2025
Short summary
Measurement report: Diurnal variability in NO2 and HCHO lower-tropospheric vertical profiles in southeastern Los Angeles
Peter K. Peterson, Lisa F. Hernandez, Leslie Tanaka, and Alejandro Dunnick
Atmos. Chem. Phys., 25, 7777–7788, https://doi.org/10.5194/acp-25-7777-2025,https://doi.org/10.5194/acp-25-7777-2025, 2025
Short summary
Biosphere–atmosphere related processes influence trace-gas and aerosol satellite–model biases
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
Atmos. Chem. Phys., 25, 7269–7297, https://doi.org/10.5194/acp-25-7269-2025,https://doi.org/10.5194/acp-25-7269-2025, 2025
Short summary

Cited articles

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen oxide emissions from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102, https://doi.org/10.1029/2004GL020312, 2004.
Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, 2011.
Beirle, S., Hörmann, C., Penning de Vries, M., Dörner, S., Kern, C., and Wagner, T.: Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kilauea volcano, Hawai'i, Atmos. Chem. Phys., 14, 8309–8322, https://doi.org/10.5194/acp-14-8309-2014, 2014.
Beljaars, A. C. M., Brown, A. R., and Wood, N.: A new parametrization of turbulent orographic form drag, Q. J. Roy. Meteorol. Soc., 130, 1327–1347, 2004.
Download
Short summary
We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in polluted background. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Global inventory significantly underestimated NOx emissions in Chinese cities, most likely due to uncertainties associated with downscaling approaches.
Share
Altmetrics
Final-revised paper
Preprint