Articles | Volume 16, issue 6
https://doi.org/10.5194/acp-16-3953-2016
https://doi.org/10.5194/acp-16-3953-2016
Research article
 | 
24 Mar 2016
Research article |  | 24 Mar 2016

Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India

Gaddamidi Sreenivas, Pathakoti Mahesh, Jose Subin, Asuri Lakshmi Kanchana, Pamaraju Venkata Narasimha Rao, and Vinay Kumar Dadhwal

Related authors

Real-time measurements of non-methane volatile organic compounds in the central Indo-Gangetic basin, Lucknow, India: source characterisation and their role in O3 and secondary organic aerosol formation
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023,https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Retrieval of CO2, CH4, CO and N2O using ground- based FTIR data and validation against satellite observations over the Shadnagar, India
Mahesh Pathakoti, Sreenivas Gaddamidi, Biswadip Gharai, Sesha Sai Mullapudi Venkata Rama, Rajan Kumar Sundaran, and Wei Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-7,https://doi.org/10.5194/amt-2019-7, 2019
Revised manuscript not accepted
Short summary
Atmospheric CO2 retrieval from ground based FTIR spectrometer over Shadnagar, India
Pathakoti Mahesh, Gaddamidi Sreenivas, Pamaraju Venkata Narasimha Rao, and Vinay Kumar Dadhwal
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-177,https://doi.org/10.5194/amt-2016-177, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Mixing-layer-height-referenced ozone vertical distribution in the lower troposphere of Chinese megacities: stratification, classification, and meteorological and photochemical mechanisms
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024,https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Six years of continuous carbon isotope composition measurements of methane in Heidelberg (Germany) – a study of source contributions and comparison to emission inventories
Antje Hoheisel and Martina Schmidt
Atmos. Chem. Phys., 24, 2951–2969, https://doi.org/10.5194/acp-24-2951-2024,https://doi.org/10.5194/acp-24-2951-2024, 2024
Short summary
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024,https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Joseph Seitz, Shiyuan Zhong, Joseph J. Charney, Warren E. Heilman, Kenneth L. Clark, Xindi Bian, Nicholas S. Skowronski, Michael R. Gallagher, Matthew Patterson, Jason Cole, Michael T. Kiefer, Rory Hadden, and Eric Mueller
Atmos. Chem. Phys., 24, 1119–1142, https://doi.org/10.5194/acp-24-1119-2024,https://doi.org/10.5194/acp-24-1119-2024, 2024
Short summary
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023,https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary

Cited articles

Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res., 117, D16117, https://doi.org/10.1029/2012JD017598, 2012.
Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res., 14, 699–710, 2009.
Baer, D. S., Paul, J. B., Gupta, M., and O'Keefe, A.: Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy, Appl. Phys. B, 75, 261–265, 2002.
Berman, E. S., Fladeland, M., Liem, J., Kolyer, R., and Gupta, M.: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle, Sensors and Actua. B-Chem., 169, 128–135, 2012.
Crutzen, P. J.: Methane's sinks and sources, Nature, 350, 380–381, 1991.
Download
Short summary
This study provides systematic and scientific representation of greenhouse gases (CO2 and CH4) and its dynamics at a suburban site of India. It was required to generate reliable, highly precise, and accurate measurements of CO2 and CH4 over this part of the world. We made use of high-precision greenhouse gases measurements recorded by LGR-GGA instrument also by complementary data from remote sensing satellites as well as from automatic weather station.
Altmetrics
Final-revised paper
Preprint