Articles | Volume 16, issue 4
https://doi.org/10.5194/acp-16-2323-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-2323-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States
Department of Physics and Atmospheric Science, Dalhousie
University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2,
Canada
Colette L. Heald
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139-4307, USA
Sam J. Silva
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139-4307, USA
Randall V. Martin
Department of Physics and Atmospheric Science, Dalhousie
University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2,
Canada
Harvard-Smithsonian Center for Astrophysics, Cambridge,
Massachusetts, USA
Related authors
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Anthony Y. H. Wong, Jeffrey A. Geddes, Amos P. K. Tai, and Sam J. Silva
Atmos. Chem. Phys., 19, 14365–14385, https://doi.org/10.5194/acp-19-14365-2019, https://doi.org/10.5194/acp-19-14365-2019, 2019
Short summary
Short summary
Dry deposition is an important, but highly uncertain, sink for surface ozone. Several popular parameterizations exist to model this process, which vary with respect to how they depend on land cover and environmental variables. Here, we predict ozone dry deposition globally over 30 years, comparing four different approaches. We find that the choice of dry deposition parameterization affects the distribution, seasonal means, long-term trends, and interannual variability of surface ozone.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Jeffrey A. Geddes and Randall V. Martin
Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, https://doi.org/10.5194/acp-17-10071-2017, 2017
Short summary
Short summary
We use observations of nitrogen dioxide columns from multiple satellite instruments with the help of a chemical transport model to constrain the global deposition of reactive nitrogen oxides (NOy) over the last 2 decades. NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. We also find changes in the export of NOy via atmospheric transport, with direct impacts on countries downwind of source regions.
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
S. C. Pugliese, J. G. Murphy, J. A. Geddes, and J. M. Wang
Atmos. Chem. Phys., 14, 8197–8207, https://doi.org/10.5194/acp-14-8197-2014, https://doi.org/10.5194/acp-14-8197-2014, 2014
J. A. Geddes and J. G. Murphy
Atmos. Chem. Phys., 14, 2939–2957, https://doi.org/10.5194/acp-14-2939-2014, https://doi.org/10.5194/acp-14-2939-2014, 2014
J. M. Wang, J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas
Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, https://doi.org/10.5194/bg-10-4371-2013, 2013
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Brian L. Boys, Randall V. Martin, and Trevor C. VandenBoer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2994, https://doi.org/10.5194/egusphere-2024-2994, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A widely used dry deposition parameterization for NO2 is updated by including a well-known heterogeneous hydrolysis reaction on deposition surfaces. This mechanistic update eliminates a large low bias of -80 % in simulated NO2 nocturnal deposition velocities evaluated against long-term eddy covariance flux observations over Harvard Forest. We highlight the importance of canopy surface area effects as well as soil NO emission in formulating and evaluating NO2 dry deposition parameterizations.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023, https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary
Short summary
We developed and evaluated processes affecting within-day (diel) variability in PM2.5 concentrations in a chemical transport model over the contiguous US. Diel variability in PM2.5 for the contiguous US is driven by early-morning accumulation into a shallow mixed layer, decreases from mid-morning through afternoon with mixed-layer growth, increases from mid-afternoon through evening as the mixed-layer collapses, and decreases overnight as emissions decrease.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023, https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Short summary
Models are essential to diagnose the significant effects of nitrogen oxides (NOx) on air pollution. We use an air quality model to illustrate the variability of NOx resolution-dependent simulation biases; how these biases depend on specific chemical environments, driving mechanisms, and vertical variabilities; and how these biases affect the interpretation of satellite observations. High-resolution simulations are thus critical to accurately interpret NOx and its relevance to air quality.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Jun Meng, Randall V. Martin, Paul Ginoux, Melanie Hammer, Melissa P. Sulprizio, David A. Ridley, and Aaron van Donkelaar
Geosci. Model Dev., 14, 4249–4260, https://doi.org/10.5194/gmd-14-4249-2021, https://doi.org/10.5194/gmd-14-4249-2021, 2021
Short summary
Short summary
Dust emissions in models, for example, GEOS-Chem, have a strong nonlinear dependence on meteorology, which means dust emission strengths calculated from different resolution meteorological fields are different. Offline high-resolution dust emissions with an optimized global dust strength, presented in this work, can be implemented into GEOS-Chem as offline emission inventory so that it could promote model development by harmonizing dust emissions across simulations of different resolutions.
Sam J. Silva, Po-Lun Ma, Joseph C. Hardin, and Daniel Rothenberg
Geosci. Model Dev., 14, 3067–3077, https://doi.org/10.5194/gmd-14-3067-2021, https://doi.org/10.5194/gmd-14-3067-2021, 2021
Short summary
Short summary
The activation of aerosol into cloud droplets is an important but uncertain process in the Earth system. The physical and chemical interactions that govern this process are too computationally expensive to explicitly resolve in modern Earth system models. Here, we demonstrate how hybrid machine learning approaches can provide a potential path forward, enabling the representation of the more detailed physics and chemistry at a reduced computational cost while still retaining physical information.
Ruud H. H. Janssen, Colette L. Heald, Allison L. Steiner, Anne E. Perring, J. Alex Huffman, Ellis S. Robinson, Cynthia H. Twohy, and Luke D. Ziemba
Atmos. Chem. Phys., 21, 4381–4401, https://doi.org/10.5194/acp-21-4381-2021, https://doi.org/10.5194/acp-21-4381-2021, 2021
Short summary
Short summary
Bioaerosols are ubiquitous in the atmosphere and have the potential to affect cloud formation, as well as human and ecosystem health. However, their emissions are not well quantified, which hinders the assessment of their role in atmospheric processes. Here, we develop two new emission schemes for fungal spores based on multi-annual datasets of spore counts. We find that our modeled global emissions and burden are an order of magnitude lower than previous estimates.
Erin E. McDuffie, Steven J. Smith, Patrick O'Rourke, Kushal Tibrewal, Chandra Venkataraman, Eloise A. Marais, Bo Zheng, Monica Crippa, Michael Brauer, and Randall V. Martin
Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, https://doi.org/10.5194/essd-12-3413-2020, 2020
Short summary
Short summary
Global emission inventories are vital to understanding the impacts of air pollution on the environment, human health, and society. We update the open-source Community Emissions Data System (CEDS) to provide global gridded emissions of seven key air pollutants from 1970–2017 for 11 source sectors and multiple fuel types, including coal, solid biofuel, and liquid oil and natural gas. This dataset includes both monthly global gridded emissions and annual national totals.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Matthew J. Cooper, Randall V. Martin, Daven K. Henze, and Dylan B. A. Jones
Atmos. Chem. Phys., 20, 7231–7241, https://doi.org/10.5194/acp-20-7231-2020, https://doi.org/10.5194/acp-20-7231-2020, 2020
Short summary
Short summary
Comparisons between satellite-retrieved and model-simulated NO2 columns are affected by differences between the model vertical profile and the assumed profile used in the retrieval process. We examine how such differences impact NOx emission estimates from satellite observations. Larger differences between the simulated and assumed profile shape correspond to larger emission errors. This reveals the importance of using consistent profile information when comparing satellite columns to models.
Sam J. Silva, Colette L. Heald, and Alex B. Guenther
Geosci. Model Dev., 13, 2569–2585, https://doi.org/10.5194/gmd-13-2569-2020, https://doi.org/10.5194/gmd-13-2569-2020, 2020
Short summary
Short summary
Simulating the influence of the biosphere on atmospheric chemistry has traditionally been computationally intensive. We describe a surrogate canopy physics model parameterized using a statistical learning technique and specifically designed for use in large-scale chemical transport models. Our surrogate model reproduces a more detailed model to within 10 % without a large computational demand, improving the process representation of biosphere–atmosphere exchange.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Therese S. Carter, Colette L. Heald, Jose L. Jimenez, Pedro Campuzano-Jost, Yutaka Kondo, Nobuhiro Moteki, Joshua P. Schwarz, Christine Wiedinmyer, Anton S. Darmenov, Arlindo M. da Silva, and Johannes W. Kaiser
Atmos. Chem. Phys., 20, 2073–2097, https://doi.org/10.5194/acp-20-2073-2020, https://doi.org/10.5194/acp-20-2073-2020, 2020
Short summary
Short summary
Fires and the smoke they emit impact air quality, health, and climate, but the abundance and properties of smoke remain uncertain and poorly constrained. To explore this, we compare model simulations driven by four commonly-used fire emission inventories with surface, aloft, and satellite observations. We show that across inventories smoke emissions differ by factors of 4 to 7 over North America, challenging our ability to accurately characterize the impact of smoke on air quality and climate.
Anthony Y. H. Wong, Jeffrey A. Geddes, Amos P. K. Tai, and Sam J. Silva
Atmos. Chem. Phys., 19, 14365–14385, https://doi.org/10.5194/acp-19-14365-2019, https://doi.org/10.5194/acp-19-14365-2019, 2019
Short summary
Short summary
Dry deposition is an important, but highly uncertain, sink for surface ozone. Several popular parameterizations exist to model this process, which vary with respect to how they depend on land cover and environmental variables. Here, we predict ozone dry deposition globally over 30 years, comparing four different approaches. We find that the choice of dry deposition parameterization affects the distribution, seasonal means, long-term trends, and interannual variability of surface ozone.
Maria A. Zawadowicz, Karl D. Froyd, Anne E. Perring, Daniel M. Murphy, Dominick V. Spracklen, Colette L. Heald, Peter R. Buseck, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 13859–13870, https://doi.org/10.5194/acp-19-13859-2019, https://doi.org/10.5194/acp-19-13859-2019, 2019
Short summary
Short summary
We report measurements of small particles of biological origin (for example, fragments of bacteria, pollen, or fungal spores) in the atmosphere over the continental United States. We use a recently developed identification technique based on airborne mass spectrometry in conjunction with an extensive aircraft dataset. We show that biological particles are present at altitudes up to 10 km and we quantify typical concentrations.
William C. Porter and Colette L. Heald
Atmos. Chem. Phys., 19, 13367–13381, https://doi.org/10.5194/acp-19-13367-2019, https://doi.org/10.5194/acp-19-13367-2019, 2019
Short summary
Short summary
In this paper we explore the connection between changes in surface temperature and changes in ozone pollution. While explanations for this connection have been proposed in the past, we attempt to better quantify them using models and statistics. We find that some of the most commonly cited mechanisms, including biogenic emissions and temperature-dependent chemical processes, can explain less than half of the O3–T correlation. Meteorology is identified as the most likely driver for the remainder.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Betty Croft, Randall V. Martin, W. Richard Leaitch, Julia Burkart, Rachel Y.-W. Chang, Douglas B. Collins, Patrick L. Hayes, Anna L. Hodshire, Lin Huang, John K. Kodros, Alexander Moravek, Emma L. Mungall, Jennifer G. Murphy, Sangeeta Sharma, Samantha Tremblay, Gregory R. Wentworth, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019, https://doi.org/10.5194/acp-19-2787-2019, 2019
Short summary
Short summary
Summertime Arctic atmospheric aerosols are strongly controlled by processes related to natural regional sources. We use a chemical transport model with size-resolved aerosol microphysics to interpret measurements made during summertime 2016 in the Canadian Arctic Archipelago. Our results explore the processes that control summertime aerosol size distributions and support a climate-relevant role for Arctic marine secondary organic aerosol formed from precursor vapors with Arctic marine sources.
Robyn N. C. Latimer and Randall V. Martin
Atmos. Chem. Phys., 19, 2635–2653, https://doi.org/10.5194/acp-19-2635-2019, https://doi.org/10.5194/acp-19-2635-2019, 2019
Short summary
Short summary
Long-term aerosol measurements from the IMPROVE network were used to investigate the simulation of mass scattering efficiency in the GEOS-Chem chemical transport model. The simulation of mass scattering efficiency was developed to better represent observations by refining the representation of aerosol size and hygroscopicity. Simulated average mass scattering efficiency over North America increased by 16 %, with larger increases in northern regions and reductions in the southwest.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Short summary
In this paper we present a global aerosol–chemistry–climate model with the focus on its representation for atmospheric aerosol particles. In the model, aerosols are simulated using the aerosol module SALSA2.0, which in this paper is compared to satellite, ground, and aircraft-based observations of the properties of atmospheric aerosol. Based on this study, the model simulated aerosol properties compare well with the observations.
Luke D. Schiferl, Colette L. Heald, and David Kelly
Biogeosciences, 15, 4301–4315, https://doi.org/10.5194/bg-15-4301-2018, https://doi.org/10.5194/bg-15-4301-2018, 2018
Short summary
Short summary
To understand future food security, it is critical to develop realistic crop models with reliable sensitivity to environmental factors. We find that particulate matter (PM) causes a significant, but smaller, enhancement for global wheat and rice production than estimated without nutrient and physiological limitations imposed by a crop model. In contrast, maize grows near its physiological maximum, with little enhancement from PM. Nitrogen deposition leads to a small increase in crop production.
Melanie S. Hammer, Randall V. Martin, Chi Li, Omar Torres, Max Manning, and Brian L. Boys
Atmos. Chem. Phys., 18, 8097–8112, https://doi.org/10.5194/acp-18-8097-2018, https://doi.org/10.5194/acp-18-8097-2018, 2018
Short summary
Short summary
We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol composition. We find that global trends in the UVAI are largely explained by trends in absorption by mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol.
Chandra Venkataraman, Michael Brauer, Kushal Tibrewal, Pankaj Sadavarte, Qiao Ma, Aaron Cohen, Sreelekha Chaliyakunnel, Joseph Frostad, Zbigniew Klimont, Randall V. Martin, Dylan B. Millet, Sajeev Philip, Katherine Walker, and Shuxiao Wang
Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, https://doi.org/10.5194/acp-18-8017-2018, 2018
Matthew J. Cooper, Randall V. Martin, Alexei I. Lyapustin, and Chris A. McLinden
Atmos. Meas. Tech., 11, 2983–2994, https://doi.org/10.5194/amt-11-2983-2018, https://doi.org/10.5194/amt-11-2983-2018, 2018
Short summary
Short summary
To accurately infer air pollutant concentrations from satellite observations, we must first know the reflectivity of the Earth’s surface. Using a model, we show that satellite observations are better able to observe NO2 near the surface if snow is present. However, knowing when snow is present is difficult due to its variability. We test seven existing snow cover data sets to assess their ability to inform future satellite observations and find that the IMS data set is best suited for this task.
Luke D. Schiferl and Colette L. Heald
Atmos. Chem. Phys., 18, 5953–5966, https://doi.org/10.5194/acp-18-5953-2018, https://doi.org/10.5194/acp-18-5953-2018, 2018
Short summary
Short summary
Global population growth and industrialization have contributed to poor air quality worldwide, and increasing population will put pressure on global food production. We therefore assess how air pollution may impact crop growth. Ozone has previously been shown to damage crops. We demonstrate that the impact of particles associated with enhanced light scattering promotes growth, offsetting much, if not all, ozone damage. This has implications for air quality management and global food security.
Meng Li, Zbigniew Klimont, Qiang Zhang, Randall V. Martin, Bo Zheng, Chris Heyes, Janusz Cofala, Yuxuan Zhang, and Kebin He
Atmos. Chem. Phys., 18, 3433–3456, https://doi.org/10.5194/acp-18-3433-2018, https://doi.org/10.5194/acp-18-3433-2018, 2018
Short summary
Short summary
In this paper, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improving emission inventories. We found that SO2 emission estimates are consistent between the two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those in MIX. Discrepancies at the sector and provincial levels are much higher.
Xuan Wang, Colette L. Heald, Jiumeng Liu, Rodney J. Weber, Pedro Campuzano-Jost, Jose L. Jimenez, Joshua P. Schwarz, and Anne E. Perring
Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, https://doi.org/10.5194/acp-18-635-2018, 2018
Short summary
Short summary
Brown carbon (BrC) contributes significantly to uncertainty in estimating the global direct radiative effect (DRE) of aerosols. We develop a global model simulation of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental United States. We suggest that BrC DRE has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
David H. Hagan, Gabriel Isaacman-VanWertz, Jonathan P. Franklin, Lisa M. M. Wallace, Benjamin D. Kocar, Colette L. Heald, and Jesse H. Kroll
Atmos. Meas. Tech., 11, 315–328, https://doi.org/10.5194/amt-11-315-2018, https://doi.org/10.5194/amt-11-315-2018, 2018
Short summary
Short summary
The use of low-cost sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions. Here we describe the deployment, calibration and evaluation of electrochemical sensors on the Island of Hawai‘i. We obtain excellent performance (RMSE < 7 ppb, r2 = 0.997) across a wide dynamic range (1 ppb–2 ppm). We introduce a hybrid regression algorithm which works across a large dynamic range and shows little decay in sensitivity over time.
Jeffrey A. Geddes and Randall V. Martin
Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, https://doi.org/10.5194/acp-17-10071-2017, 2017
Short summary
Short summary
We use observations of nitrogen dioxide columns from multiple satellite instruments with the help of a chemical transport model to constrain the global deposition of reactive nitrogen oxides (NOy) over the last 2 decades. NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. We also find changes in the export of NOy via atmospheric transport, with direct impacts on countries downwind of source regions.
Guannan Geng, Qiang Zhang, Randall V. Martin, Jintai Lin, Hong Huo, Bo Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 4131–4145, https://doi.org/10.5194/acp-17-4131-2017, https://doi.org/10.5194/acp-17-4131-2017, 2017
Short summary
Short summary
We investigated the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled NO2 columns from the six gridded emissions are compared with satellite-based columns from OMI. Results show that differences between modeled and satellite-based NO2 columns are sensitive to the spatial proxies used in the gridded emission inventories.
Molly B. Smith, Natalie M. Mahowald, Samuel Albani, Aaron Perry, Remi Losno, Zihan Qu, Beatrice Marticorena, David A. Ridley, and Colette L. Heald
Atmos. Chem. Phys., 17, 3253–3278, https://doi.org/10.5194/acp-17-3253-2017, https://doi.org/10.5194/acp-17-3253-2017, 2017
Short summary
Short summary
Using different meteorology reanalyses to drive dust in climate modeling can produce dissimilar global dust distributions, especially in the Southern Hemisphere (SH). It may therefore not be advisable for SH dust studies to base results on simulations driven by one reanalysis. Northern Hemisphere dust varies mostly on seasonal timescales, while SH dust varies on interannual timescales. Dust is an important part of climate modeling, and we hope this contributes to understanding these simulations.
David A. Ridley, Colette L. Heald, Jasper F. Kok, and Chun Zhao
Atmos. Chem. Phys., 16, 15097–15117, https://doi.org/10.5194/acp-16-15097-2016, https://doi.org/10.5194/acp-16-15097-2016, 2016
Short summary
Short summary
Mineral dust aerosol affects climate through interaction with radiation and clouds, human health through contribution to particulate matter, and ecosystem health through nutrient transport and deposition. In this study, we use satellite and in situ retrievals to derive an observational estimate of the global dust AOD with which evaluate modeled dust AOD. Differences in the seasonality and regional distribution of dust AOD between observations and models are highlighted.
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Xuan Wang, Colette L. Heald, Arthur J. Sedlacek, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Thomas B. Watson, Allison C. Aiken, Stephen R. Springston, and Paulo Artaxo
Atmos. Chem. Phys., 16, 12733–12752, https://doi.org/10.5194/acp-16-12733-2016, https://doi.org/10.5194/acp-16-12733-2016, 2016
Short summary
Short summary
We describe a new approach to estimate the absorption of brown carbon (BrC) from multiple-wavelength absorption measurements. By applying this method to column and surface observations globally, we find that BrC contributes up to 40 % of the absorption measured at 440 nm. The analysis of two surface sites also suggests that BrC absorptivity decreases with photochemical aging in biomass burning plumes, but not in typical urban conditions.
Luke D. Schiferl, Colette L. Heald, Martin Van Damme, Lieven Clarisse, Cathy Clerbaux, Pierre-François Coheur, John B. Nowak, J. Andrew Neuman, Scott C. Herndon, Joseph R. Roscioli, and Scott J. Eilerman
Atmos. Chem. Phys., 16, 12305–12328, https://doi.org/10.5194/acp-16-12305-2016, https://doi.org/10.5194/acp-16-12305-2016, 2016
Short summary
Short summary
This study combines new observations and a simulation to assess the interannual variability of atmospheric ammonia concentrations over the United States. The model generally underrepresents the observed variability. Nearly two-thirds of the simulated variability is caused by meteorology, twice that caused by regulations on fossil fuel combustion emissions. Adding ammonia emissions variability does not substantially improve the simulation and has little impact on summer particle concentrations.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Graydon Snider, Crystal L. Weagle, Kalaivani K. Murdymootoo, Amanda Ring, Yvonne Ritchie, Emily Stone, Ainsley Walsh, Clement Akoshile, Nguyen Xuan Anh, Rajasekhar Balasubramanian, Jeff Brook, Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Brent N. Holben, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Leslie K. Norford, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, Sachchida Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Michael Brauer, Aaron Cohen, Mark D. Gibson, Yang Liu, J. Vanderlei Martins, Yinon Rudich, and Randall V. Martin
Atmos. Chem. Phys., 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016, https://doi.org/10.5194/acp-16-9629-2016, 2016
Short summary
Short summary
We examine the chemical composition of fine particulate matter (PM2.5) collected on filters at traditionally undersampled, globally dispersed urban locations. Several PM2.5 chemical components (e.g. ammonium sulfate, ammonium nitrate, and black carbon) vary by more than an order of magnitude between sites while aerosol hygroscopicity varies by a factor of 2. Enhanced anthropogenic dust fractions in large urban areas are apparent from high Zn : Al ratios.
Matthew J. Alvarado, Chantelle R. Lonsdale, Helen L. Macintyre, Huisheng Bian, Mian Chin, David A. Ridley, Colette L. Heald, Kenneth L. Thornhill, Bruce E. Anderson, Michael J. Cubison, Jose L. Jimenez, Yutaka Kondo, Lokesh K. Sahu, Jack E. Dibb, and Chien Wang
Atmos. Chem. Phys., 16, 9435–9455, https://doi.org/10.5194/acp-16-9435-2016, https://doi.org/10.5194/acp-16-9435-2016, 2016
Short summary
Short summary
Understanding the scattering and absorption of light by aerosols is necessary for understanding air quality and climate change. We used data from the 2008 ARCTAS campaign to evaluate aerosol optical property models using a closure methodology that separates errors in these models from other errors in aerosol emissions, chemistry, or transport. We find that the models on average perform reasonably well, and make suggestions for how remaining biases could be reduced.
Emma L. Mungall, Betty Croft, Martine Lizotte, Jennie L. Thomas, Jennifer G. Murphy, Maurice Levasseur, Randall V. Martin, Jeremy J. B. Wentzell, John Liggio, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, https://doi.org/10.5194/acp-16-6665-2016, 2016
Short summary
Short summary
Previous work has suggested that marine emissions of dimethyl sulfide (DMS) could impact the Arctic climate through interactions with clouds. We made the first high-time-resolution measurements of summertime atmospheric DMS in the Canadian Arctic, and performed source sensitivity simulations. We found that regional marine sources dominated, but do not appear to be sufficient to explain our observations. Understanding DMS sources in the Arctic is necessary to model future climate in the region.
Sajeev Philip, Randall V. Martin, and Christoph A. Keller
Geosci. Model Dev., 9, 1683–1695, https://doi.org/10.5194/gmd-9-1683-2016, https://doi.org/10.5194/gmd-9-1683-2016, 2016
Short summary
Short summary
We assessed the sensitivity of simulation accuracy to the duration of chemical and transport operators in a chemistry-transport model.
Longer continuous transport operator duration increases concentrations of emitted species.
Chemical operator duration twice that of the transport operator duration offers more simulation accuracy per unit computation.
The simulation error from coarser spatial resolution generally exceeds that from longer operator duration.
Betty Croft, Randall V. Martin, W. Richard Leaitch, Peter Tunved, Thomas J. Breider, Stephen D. D'Andrea, and Jeffrey R. Pierce
Atmos. Chem. Phys., 16, 3665–3682, https://doi.org/10.5194/acp-16-3665-2016, https://doi.org/10.5194/acp-16-3665-2016, 2016
Short summary
Short summary
Measurements at high-Arctic sites show a strong annual cycle in atmospheric particle number and size. Previous studies identified poor scientific understanding related to global model representation of Arctic particle number and size, limiting ability to simulate this environment. Here we evaluate state-of-science ability to simulate Arctic particles using GEOS-Chem-TOMAS model, documenting key roles and interconnections of particle formation, cloud-related processes and remaining uncertainties.
Bonne Ford and Colette L. Heald
Atmos. Chem. Phys., 16, 3499–3523, https://doi.org/10.5194/acp-16-3499-2016, https://doi.org/10.5194/acp-16-3499-2016, 2016
Short summary
Short summary
As motivation for air quality research, many studies cite the fact that exposure to particulate matter is associated with premature mortality. Recently, more studies have also tried to quantify this burden; however, there are many data sets that can be used and many different methodological choices to be made. In this paper, we seek to explain the different sources of uncertainty in health impact assessments through the example of using model and satellite-based PM2.5 concentrations.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
Chi Li, Randall V. Martin, Brian L. Boys, Aaron van Donkelaar, and Sacha Ruzzante
Atmos. Chem. Phys., 16, 2435–2457, https://doi.org/10.5194/acp-16-2435-2016, https://doi.org/10.5194/acp-16-2435-2016, 2016
Short summary
Short summary
We comprehensively screen and process global hourly visibility data to construct a more reliable monthly inverse visibility (1/Vis) data set, and to infer trends in atmospheric haze. Consistency is found for the inferred 1/Vis seasonality and trends with other collocated in situ aerosol measurements over the US and Europe. Trends of 1/Vis over 1945–1996 for the eastern US, and over 1973–2013 for Europe and eastern Asia are significantly associated with the variation of SO2 emission.
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
J.-T. Lin, M.-Y. Liu, J.-Y. Xin, K. F. Boersma, R. Spurr, R. Martin, and Q. Zhang
Atmos. Chem. Phys., 15, 11217–11241, https://doi.org/10.5194/acp-15-11217-2015, https://doi.org/10.5194/acp-15-11217-2015, 2015
Short summary
Short summary
We conduct an improved OMI-based retrieval of tropospheric NO2 VCDs (POMINO) over China by explicitly accounting for aerosol optical effects and surface reflectance anisotropy. Compared to the traditional implicit aerosol treatment, an explicit treatment greatly lowers NO2 VCDs and subsequently estimated NOx emissions over eastern China, but with large spatiotemporal dependence. An explicit treatment also better captures high-pollution days. Effects of surface reflectance treatments are smaller.
W. C. Porter, C. L. Heald, D. Cooley, and B. Russell
Atmos. Chem. Phys., 15, 10349–10366, https://doi.org/10.5194/acp-15-10349-2015, https://doi.org/10.5194/acp-15-10349-2015, 2015
J. R. Pierce, B. Croft, J. K. Kodros, S. D. D'Andrea, and R. V. Martin
Atmos. Chem. Phys., 15, 6147–6158, https://doi.org/10.5194/acp-15-6147-2015, https://doi.org/10.5194/acp-15-6147-2015, 2015
Short summary
Short summary
In this paper we show that coagulation of cloud droplets with interstitial aerosol particles, a process often neglected in atmospheric aerosol models, has a significant impact on aerosol size distributions and radiative forcings.
M. Val Martin, C. L. Heald, J.-F. Lamarque, S. Tilmes, L. K. Emmons, and B. A. Schichtel
Atmos. Chem. Phys., 15, 2805–2823, https://doi.org/10.5194/acp-15-2805-2015, https://doi.org/10.5194/acp-15-2805-2015, 2015
Short summary
Short summary
We present for the first time the relative effect of climate, emissions, and land use change on ozone and PM25 over the United States, focusing on the national parks. Air quality in 2050 will likely be dominated by emission patterns, but climate and land use changes alone can lead to a substantial increase in air pollution over most of the US, with important implications for O3 air quality, visibility and ecosystem health degradation in the national parks.
G. Snider, C. L. Weagle, R. V. Martin, A. van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, N. X. Anh, J. Brook, J. Dong, R. M. Garland, R. Greenwald, D. Griffith, K. He, B. N. Holben, R. Kahn, I. Koren, N. Lagrosas, P. Lestari, Z. Ma, J. Vanderlei Martins, E. J. Quel, Y. Rudich, A. Salam, S. N. Tripathi, C. Yu, Q. Zhang, Y. Zhang, M. Brauer, A. Cohen, M. D. Gibson, and Y. Liu
Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, https://doi.org/10.5194/amt-8-505-2015, 2015
Short summary
Short summary
We have initiated a global network of ground-level monitoring stations to measure concentrations of fine aerosols in urban environments. Our findings include major ions species, total mass, and total scatter at three wavelengths. Results will be used to further evaluate and enhance satellite remote sensing estimates.
L. N. Lamsal, N. A. Krotkov, E. A. Celarier, W. H. Swartz, K. E. Pickering, E. J. Bucsela, J. F. Gleason, R. V. Martin, S. Philip, H. Irie, A. Cede, J. Herman, A. Weinheimer, J. J. Szykman, and T. N. Knepp
Atmos. Chem. Phys., 14, 11587–11609, https://doi.org/10.5194/acp-14-11587-2014, https://doi.org/10.5194/acp-14-11587-2014, 2014
X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke
Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, https://doi.org/10.5194/acp-14-10989-2014, 2014
G. C. M. Vinken, K. F. Boersma, J. D. Maasakkers, M. Adon, and R. V. Martin
Atmos. Chem. Phys., 14, 10363–10381, https://doi.org/10.5194/acp-14-10363-2014, https://doi.org/10.5194/acp-14-10363-2014, 2014
D. V. Spracklen and C. L. Heald
Atmos. Chem. Phys., 14, 9051–9059, https://doi.org/10.5194/acp-14-9051-2014, https://doi.org/10.5194/acp-14-9051-2014, 2014
S. C. Pugliese, J. G. Murphy, J. A. Geddes, and J. M. Wang
Atmos. Chem. Phys., 14, 8197–8207, https://doi.org/10.5194/acp-14-8197-2014, https://doi.org/10.5194/acp-14-8197-2014, 2014
D. A. Ridley, C. L. Heald, and J. M. Prospero
Atmos. Chem. Phys., 14, 5735–5747, https://doi.org/10.5194/acp-14-5735-2014, https://doi.org/10.5194/acp-14-5735-2014, 2014
C. L. Heald, D. A. Ridley, J. H. Kroll, S. R. H. Barrett, K. E. Cady-Pereira, M. J. Alvarado, and C. D. Holmes
Atmos. Chem. Phys., 14, 5513–5527, https://doi.org/10.5194/acp-14-5513-2014, https://doi.org/10.5194/acp-14-5513-2014, 2014
B. Croft, J. R. Pierce, and R. V. Martin
Atmos. Chem. Phys., 14, 4313–4325, https://doi.org/10.5194/acp-14-4313-2014, https://doi.org/10.5194/acp-14-4313-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
M. Van Damme, L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, and P. F. Coheur
Atmos. Chem. Phys., 14, 2905–2922, https://doi.org/10.5194/acp-14-2905-2014, https://doi.org/10.5194/acp-14-2905-2014, 2014
J. A. Geddes and J. G. Murphy
Atmos. Chem. Phys., 14, 2939–2957, https://doi.org/10.5194/acp-14-2939-2014, https://doi.org/10.5194/acp-14-2939-2014, 2014
J.-T. Lin, R. V. Martin, K. F. Boersma, M. Sneep, P. Stammes, R. Spurr, P. Wang, M. Van Roozendael, K. Clémer, and H. Irie
Atmos. Chem. Phys., 14, 1441–1461, https://doi.org/10.5194/acp-14-1441-2014, https://doi.org/10.5194/acp-14-1441-2014, 2014
A. Wiacek, R. V. Martin, A. E. Bourassa, N. D. Lloyd, and D. A. Degenstein
Atmos. Meas. Tech., 6, 2761–2776, https://doi.org/10.5194/amt-6-2761-2013, https://doi.org/10.5194/amt-6-2761-2013, 2013
B. Ford and C. L. Heald
Atmos. Chem. Phys., 13, 9269–9283, https://doi.org/10.5194/acp-13-9269-2013, https://doi.org/10.5194/acp-13-9269-2013, 2013
M. Val Martin, C. L. Heald, B. Ford, A. J. Prenni, and C. Wiedinmyer
Atmos. Chem. Phys., 13, 7429–7439, https://doi.org/10.5194/acp-13-7429-2013, https://doi.org/10.5194/acp-13-7429-2013, 2013
J. M. Wang, J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas
Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, https://doi.org/10.5194/bg-10-4371-2013, 2013
A. R. Berg, C. L. Heald, K. E. Huff Hartz, A. G. Hallar, A. J. H. Meddens, J. A. Hicke, J.-F. Lamarque, and S. Tilmes
Atmos. Chem. Phys., 13, 3149–3161, https://doi.org/10.5194/acp-13-3149-2013, https://doi.org/10.5194/acp-13-3149-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe
Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US
Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE
Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling
Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem
Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes
Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
Improved gridded ammonia emission inventory in China
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Indirect contributions of global fires to surface ozone through ozone–vegetation feedback
Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model
A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Data assimilation using an ensemble of models: a hierarchical approach
Fundamentals of data assimilation applied to biogeochemistry
On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?
Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network
Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America
Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia
Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health
Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños
Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015
Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling
Wildfire air pollution hazard during the 21st century
Ozone and haze pollution weakens net primary productivity in China
How can mountaintop CO2 observations be used to constrain regional carbon fluxes?
Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks
Impact of Siberian observations on the optimization of surface CO2 flux
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone
Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia
Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia
Air quality impacts of European wildfire emissions in a changing climate
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
High-resolution ammonia emissions inventories in China from 1980 to 2012
Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean
Impact of future land-cover changes on HNO3 and O3 surface dry deposition
Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010
Relationships between photosynthesis and formaldehyde as a probe of isoprene emission
A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy
Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study
Influence of CO2 observations on the optimized CO2 flux in an ensemble Kalman filter
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Julius Vira, Peter Hess, Money Ossohou, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, https://doi.org/10.5194/acp-22-1883-2022, 2022
Short summary
Short summary
Ammonia is one of the main components of nitrogen deposition. Here we use a new model to assess the ammonia emissions from agriculture, the largest anthropogenic source of ammonia. The model results are consistent with earlier estimates over industrialized regions in agreement with observations. However, the model predicts much higher emissions over sub-Saharan Africa compared to earlier estimates. Available observations from surface stations and satellites support these higher emissions.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Ditte Taipale, Veli-Matti Kerminen, Mikael Ehn, Markku Kulmala, and Ülo Niinemets
Atmos. Chem. Phys., 21, 17389–17431, https://doi.org/10.5194/acp-21-17389-2021, https://doi.org/10.5194/acp-21-17389-2021, 2021
Short summary
Short summary
Larval feeding and fungal infections of leaves can greatly change the emission of volatile compounds from plants and thereby influence aerosol processes in the air. We developed a model that considers the dynamics of larvae and fungi and the dependency of the emission on the severity of stress. We show that the infections can be highly atmospherically relevant during long periods of time and at times more important to consider than the parameters that are currently used in emission models.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, https://doi.org/10.5194/acp-21-15883-2021, 2021
Short summary
Short summary
This study focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a NH3 emission inventory for mainland China in 2016. The inventory showed a higher level of accuracy than other inventories based on evaluation using the WRF-Chem and observation data.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020, https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary
Short summary
Australian cities with a high biogenic influence will see higher pollution levels in a warmer climate. We show that four Eucalyptus species grown in future-climate conditions can emit isoprene at temperatures 9 K above the peak temperatures capping isoprene in biogenic-emission models. With these measurements, we predict up to 2 ppb increases in isoprene in 2050, causing up to 21 ppb of ozone and 0.4 µg m−3 of aerosol in Sydney. The ozone increase is one-fifth of the hourly air quality limit.
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737, https://doi.org/10.5194/acp-20-3725-2020, https://doi.org/10.5194/acp-20-3725-2020, 2020
Short summary
Short summary
This work extends previous calculations of carbon dioxide sources and sinks to take account of the varying quality of atmospheric models. It uses an extended version of Bayesian statistics which includes the model as one of the unknowns. I performed the work as an example of including the model in the description of the uncertainty.
Peter J. Rayner, Anna M. Michalak, and Frédéric Chevallier
Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, https://doi.org/10.5194/acp-19-13911-2019, 2019
Short summary
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, https://doi.org/10.5194/acp-18-17963-2018, 2018
Kandice L. Harper and Nadine Unger
Atmos. Chem. Phys., 18, 16931–16952, https://doi.org/10.5194/acp-18-16931-2018, https://doi.org/10.5194/acp-18-16931-2018, 2018
Short summary
Short summary
Chemistry–climate modeling finds that the induced global-mean ozone forcing for 1990–2010 maritime Southeast Asian land cover change, including expansion of high-isoprene-emitting oil palm plantations, is +9.2 mW m−2. Regional land cover change drove stronger global-mean ozone enhancements in the upper troposphere than in the lower troposphere. The results indicate that this mechanism of ozone forcing may increase in importance in future years if regional oil palm expansion continues unabated.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Wolfgang Knorr, Frank Dentener, Jean-François Lamarque, Leiwen Jiang, and Almut Arneth
Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, https://doi.org/10.5194/acp-17-9223-2017, 2017
Short summary
Short summary
Wildfires cause considerable air pollution, and climate change is usually expected to increase both wildfire activity and air pollution from those fires. This study takes a closer look at the problem by examining the role of demographic changes in addition to climate change. It finds that demographics will be the main driver of changes in wildfire activity in many parts of the developing world. Air pollution from wildfires will remain significant, with major implications for air quality policy.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Short summary
Surface ozone harms vegetation, which can influence not only climate but also ozone air quality itself. We implement a scheme for ozone damage on vegetation into an Earth system model, so that for the first time simulated vegetation and ozone can coevolve in a fully coupled simulation. With ozone–vegetation coupling, simulated ozone is found to be significantly higher by up to 6 ppbv. Reduced dry deposition and enhanced isoprene emission contribute to most of these increases.
Jinwoong Kim, Hyun Mee Kim, Chun-Ho Cho, Kyung-On Boo, Andrew R. Jacobson, Motoki Sasakawa, Toshinobu Machida, Mikhail Arshinov, and Nikolay Fedoseev
Atmos. Chem. Phys., 17, 2881–2899, https://doi.org/10.5194/acp-17-2881-2017, https://doi.org/10.5194/acp-17-2881-2017, 2017
Short summary
Short summary
To investigate the effect of CO2 observations in Siberia on the surface CO2 flux analyses, two experiments using observation data sets with and without Siberian measurements were performed. While the magnitude of the optimized surface CO2 flux uptake in Siberia decreased, that in the other regions of the Northern Hemisphere increased for the experiment with Siberian observations. It is expected that the Siberian observations play an important role in estimating surface CO2 flux in the future.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Wolfgang Knorr, Frank Dentener, Stijn Hantson, Leiwen Jiang, Zbigniew Klimont, and Almut Arneth
Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, https://doi.org/10.5194/acp-16-5685-2016, 2016
Short summary
Short summary
Wildfires are generally expected to increase in frequency and severity due to climate change. For Europe this could mean increased air pollution levels during the summer. Until 2050, predicted changes are moderate, but under a scenario of strong climate change, these may increase considerably during the later part of the current century. In Portugal and several parts of the Mediterranean, emissions may become relevant for meeting WHO concentration targets.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
A. Ito and Z. Shi
Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, https://doi.org/10.5194/acp-16-85-2016, 2016
Short summary
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
Y. Fu and A. P. K. Tai
Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, https://doi.org/10.5194/acp-15-10093-2015, 2015
Short summary
Short summary
Historical land cover and land use change alone between 1980 and 2010 could lead to reduced summertime surface ozone by up to 4ppbv in East Asia. Climate change alone could lead to an increase in summertime ozone by 2-10ppbv in most of East Asia. Land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. The sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia.
Y. Zheng, N. Unger, M. P. Barkley, and X. Yue
Atmos. Chem. Phys., 15, 8559–8576, https://doi.org/10.5194/acp-15-8559-2015, https://doi.org/10.5194/acp-15-8559-2015, 2015
Short summary
Short summary
We apply two global observational data sets, gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv), to probe isoprene emission variability on large spatiotemporal scales. GPP and HCHOv are decoupled or weakly anticorrelated in regions and seasons when isoprene emission is high. Isoprene emission models that include soil moisture dependence demonstrate greater skill in reproducing observed seasonal GPP-HCHOv correlations in the southeast US and the Amazon.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
J. Kim, H. M. Kim, and C.-H. Cho
Atmos. Chem. Phys., 14, 13515–13530, https://doi.org/10.5194/acp-14-13515-2014, https://doi.org/10.5194/acp-14-13515-2014, 2014
Cited articles
Amin, H., Atkins, P. T., Russo, R. S., Brown, A. W., Sive, B., Hallar, A. G.,
and Huff Hartz, K. E.: Effect of bark beetle infestation on secondary organic
aerosol precursor emissions., Environ. Sci. Technol., 46, 5696–5703,
https://doi.org/10.1021/es204205m, 2012.
Amin, H., Atkins, P. T., Russo, R. S., Brown, A. W., Sive, B., Hallar, A. G.,
and Huff Hartz, K. E.: Effect of bark beetle infestation on secondary
organic aerosol precursor emissions., Environ. Sci. Technol., 46,
5696–5703, https://doi.org/10.1021/es204205m, 2012.
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J.,
Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., McDowell, N.,
Pan, Y., Raffa, K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C., and
Zeppel, M.: Tree mortality from drought, insects, and their interactions in
a changing climate., New Phytol., 208, 674–683,
https://doi.org/10.1111/nph.13477, 2015.
Arneth, A., Sitch, S., Bondeau, A., Butterbach-Bahl, K., Foster, P., Gedney, N.,
de Noblet-Ducoudré, N., Prentice, I. C., Sanderson, M., Thonicke, K., Wania, R.,
and Zaehle, S.: From biota to chemistry and climate: towards a comprehensive
description of trace gas exchange between the biosphere and atmosphere,
Biogeosciences, 7, 121–149, https://doi.org/10.5194/bg-7-121-2010, 2010.
Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation,
Plant Cell Environ., 28, 949–964, https://doi.org/10.1111/j.1365-3040.2005.01341.x,
2005.
Ashworth, K., Folberth, G., Hewitt, C. N., and Wild, O.: Impacts of
near-future cultivation of biofuel feedstocks on atmospheric composition and
local air quality, Atmos. Chem. Phys., 12, 919–939,
https://doi.org/10.5194/acp-12-919-2012, 2012.
Ashworth, K., Chung, S. H., Griffin, R. J., Chen, J., Forkel, R., Bryan, A.
M., and Steiner, A. L.: FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a
1-D model of biosphere-atmosphere chemical exchange, Geosci. Model Dev., 8,
3765–3784, https://doi.org/10.5194/gmd-8-3765-2015, 2015.
Beltman, J. B., Hendriks, C., Tum, M., and Schaap, M.: The impact of large
scale biomass production on ozone air pollution in Europe, Atmos. Environ.,
71, 352–363, https://doi.org/10.1016/j.atmosenv.2013.02.019, 2013.
Berg, A. R., Heald, C. L., Huff Hartz, K. E., Hallar, A. G., Meddens, A. J.
H., Hicke, J. A., Lamarque, J.-F., and Tilmes, S.: The impact of bark beetle
infestations on monoterpene emissions and secondary organic aerosol formation
in western North America, Atmos. Chem. Phys., 13, 3149–3161,
https://doi.org/10.5194/acp-13-3149-2013, 2013.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D.,
Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: model
description and evaluation, J. Geophys. Res., 106, 23073,
https://doi.org/10.1029/2001JD000807, 2001.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, 2008.
Bond, M. L., Lee, D. E., Bradley, C. M., and Hanson, C. T.: Influence of
pre-fire tree mortality on fire severity in conifer forests of the San
Bernardino Mountains, California, Open For. Sci. J., 2, 41–47, 2009.
Brown, M., Black, T. A., Nesic, Z., Foord, V. N., Spittlehouse, D. L.,
Fredeen, A. L., Grant, N. J., Burton, P. J., and Trofymow, J. A.: Impact of
mountain pine beetle on the net ecosystem production of lodgepole pine stands
in British Columbia, Agr. Forest Meteorol., 150, 254–264,
https://doi.org/10.1016/j.agrformet.2009.11.008, 2010.
Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen,
J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P. E.,
King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J.,
Rhea, L., Schaub, M., Uddling, J., Werner, W., and Emberson, L. D.: DO3SE
modelling of soil moisture to determine ozone flux to forest trees, Atmos.
Chem. Phys., 12, 5537–5562, https://doi.org/10.5194/acp-12-5537-2012, 2012.
Buston, K. and Maclachlan, L.: 2014 Overview of Forest Health Conditions in
Southern British Columbia. Report by the British Columbia Ministry of
Forests, Lands, and Natural Resource Operations, Kamloops, BC, 2014.
Chen, J., Avise, J., Guenther, A., Wiedinmyer, C., Salathe, E.,
Jackson, R. B., and Lamb, B.: Future land use and land cover influences on
regional biogenic emissions and air quality in the United States, Atmos.
Environ., 43, 5771–5780, https://doi.org/10.1016/j.atmosenv.2009.08.015, 2009.
Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P.,
Flannigan, M. D., Hanson, P. J., Irland, L. C., Lugo, A. E., Peterson, C. J.,
Simberloff, D., Swanson, F. J., Stocks, B. J., and Wotton, M. B.: Climate
change and forest disturbances, Bioscience, 51, 723,
https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2, 2001.
Donahue, N., Robinson, A., Stanier, C., and Pandis, S.: Coupled partitioning,
dilution, and chemical aging of semivolatile organics, Environ. Sci.
Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c., 2006.
Drewniak, B. A., Snyder, P. K., Steiner, A. L., Twine, T. E., and
Wuebbles, D. J.: Simulated changes in biogenic VOC emissions and ozone
formation from habitat expansion of Acer Rubrum (red maple), Environ. Res.
Lett., 9, 014006, https://doi.org/10.1088/1748-9326/9/1/014006, 2014.
Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N2O5
hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone,
and OH, Geophys. Res. Lett., 32, L09813, https://doi.org/10.1029/2005GL022469, 2005.
Evans, M. J. and Sofen, E. D.: Gridded Global Surface Ozone Metrics data
(1971–2015) for Atmospheric Chemistry Model Evaluation – version 2.4, Cent.
Environ. Data Anal., https://doi.org/10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452, 2015.
Faiola, C. L., Jobson, B. T., and VanReken, T. M.: Impacts of simulated
herbivory on volatile organic compound emission profiles from coniferous
plants, Biogeosciences, 12, 527–547, https://doi.org/10.5194/bg-12-527-2015, 2015.
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E.,
Meehl, G. A., and Washington, W. M.: The importance of land-cover change in
simulating future climates, Science, 310, 1674–1678,
https://doi.org/10.1126/science.1118160, 2005.
Fiore, A. M.: Background ozone over the United States in summer: origin,
trend, and contribution to pollution episodes, J. Geophys. Res., 107, 4275,
https://doi.org/10.1029/2001JD000982, 2002.
Fiore, A. M.: Evaluating the contribution of changes in isoprene emissions to
surface ozone trends over the eastern United States, J. Geophys. Res., 110,
D12303, https://doi.org/10.1029/2004JD005485, 2005.
Fisher, J. A., Jacob, D. J., Wang, Q., Bahreini, R., Carouge, C. C.,
Cubison, M. J., Dibb, J. E., Diehl, T., Jimenez, J. L., Leibensperger, E. M.,
Lu, Z., Meinders, M. B. J., Pye, H. O. T., Quinn, P. K., Sharma, S.,
Streets, D. G., van Donkelaar, A., and Yantosca, R. M.: Sources,
distribution, and acidity of sulfate–ammonium aerosol in the Arctic in
winter–spring, Atmos. Environ., 45, 7301–7318,
https://doi.org/10.1016/j.atmosenv.2011.08.030, 2011.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O
aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007,
2007.
Ganzeveld, L.: Impact of Amazonian deforestation on atmospheric chemistry,
Geophys. Res. Lett., 31, L06105, https://doi.org/10.1029/2003GL019205, 2004.
Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B.,
and Lelieveld, J.: Impact of future land use and land cover changes on
atmospheric chemistry-climate interactions, J. Geophys. Res., 115, D23301,
https://doi.org/10.1029/2010JD014041, 2010.
Gao, R., Shi, J., Huang, R., Wang, Z., and Luo, Y.: Effects of pine wilt
disease invasion on soil properties and Masson pine forest communities in the
Three Gorges reservoir region, China, Ecol. Evol., 5, 1702–1716,
https://doi.org/10.1002/ece3.1326, 2015.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,
6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hakami, A., Seinfeld, J. H., Chai, T., Tang, Y., Carmichael, G. R., and
Sandu, A.: Adjoint Sensitivity Analysis of Ozone Nonattainment over the
Continental United States, Environ. Sci. Technol., 40, 3855–3864,
https://doi.org/10.1021/es052135g, 2006.
Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry
deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15,
6419–6436, https://doi.org/10.5194/acp-15-6419-2015, 2015.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.
E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel,
Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hardacre, C. J., Palmer, P. I., Baumanns, K., Rounsevell, M., and
Murray-Rust, D.: Probabilistic estimation of future emissions of isoprene and
surface oxidant chemistry associated with land-use change in response to
growing food needs, Atmos. Chem. Phys., 13, 5451–5472,
https://doi.org/10.5194/acp-13-5451-2013, 2013.
Heald, C. L. and Spracklen, D. V: Land use change impacts on air quality and
climate, Chem. Rev., 115, 4476–4496, https://doi.org/10.1021/cr500446g, 2015.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and
Fung, I.: Predicted change in global secondary organic aerosol concentrations
in response to future climate, emissions, and land use change, J. Geophys.
Res.-Atmos., 113, D05211, https://doi.org/10.1029/2007JD009092, 2008.
Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R. J., Ted
Hogg, E. H., Kashian, D. M., Moore, D., Raffa, K. F., Sturrock, R. N., and
Vogelmann, J.: Effects of biotic disturbances on forest carbon cycling in the
United States and Canada, Glob. Change Biol., 18, 7–34,
https://doi.org/10.1111/j.1365-2486.2011.02543.x, 2012.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J.,
Grainier, C., Tie, X., Lamarque, J. -F., Schultz, M. G., Tyndall, G. S.,
Orlando, J. J. and Brasseur, G. P.: A global simulation of tropospheric ozone
and related tracers: Description and evaluation of MOZART, version 2, J.
Geophys. Res.-Atmos., 108, 4784, https://doi.org/10.1029/2002JD002853, 2003.
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R.,
Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global
soil nitric oxide emissions: implementation and space based-constraints,
Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
Joutsensaari, J., Yli-Pirilä, P., Korhonen, H., Arola, A., Blande, J. D.,
Heijari, J., Kivimäenpää, M., Mikkonen, S., Hao, L., Miettinen,
P., Lyytikäinen-Saarenmaa, P., Faiola, C. L., Laaksonen, A., and
Holopainen, J. K.: Biotic stress accelerates formation of climate-relevant
aerosols in boreal forests, Atmos. Chem. Phys., 15, 12139–12157,
https://doi.org/10.5194/acp-15-12139-2015, 2015.
Kim, H.-K., Woo, J.-H., Park, R. S., Song, C. H., Kim, J.-H., Ban, S.-J., and
Park, J.-H.: Impacts of different plant functional types on ambient ozone
predictions in the Seoul Metropolitan Areas (SMAs), Korea, Atmos. Chem.
Phys., 14, 7461–7484, https://doi.org/10.5194/acp-14-7461-2014, 2014.
Krist, F. J. J., Ellenwood, J. R., Woods, M. E., McMahan, A. J.,
Cowardin, J. P., Ryerson, D. E., Saplo, F. J., Zwelfler, M. O., and
Romero, S. A.: National Insect and Disease Forest Risk Assessment 2013-2027,
Fort Collins, CO, available at:
http://www.fs.fed.us/foresthealth/technology (last access:
23 October 2015), 2014.
Kuhns, H., Knipping, E. M., and Vukovich, J. M.: Development of a United
States-Mexico emissions inventory for the Big Bend Regional Aerosol and
Visibility Observational (BRAVO) study, J. Air Waste Manage., 55, 677–692,
2005.
Kurpius, M. R. and Goldstein, A. H.: Gas-phase chemistry dominates O3
loss to a forest, implying a source of aerosols and hydroxyl radicals to the
atmosphere, Geophys. Res. Lett., 30, 1371, https://doi.org/10.1029/2002GL016785, 2003.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.: Biogenic
volatile organic compounds in the Earth System, New Phytol., 183, 27–51,
2009.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E.,
Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S.,
Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements
and functional and structural advances in Version 4 of the Community Land
Model, J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS000045, 2011.
Li, M., Wang, Y., and Ju, W.: Effects of a remotely sensed land cover dataset
with high spatial resolution on the simulation of secondary air pollutants
over china using the nested-grid GEOS-chem chemical transport model, Adv.
Atmos. Sci., 31, 179–187, https://doi.org/10.1007/s00376-013-2290-1, 2013.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A.,
Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer,
M., and Marchetti, M.: Climate change impacts, adaptive capacity, and
vulnerability of European forest ecosystems, Forest Ecol. Manag., 259,
698–709, 2010.
MacKenzie, A. R., Langford, B., Pugh, T. A. M., Robinson, N., Misztal, P. K.,
Heard, D. E., Lee, J. D., Lewis, A. C., Jones, C. E., Hopkins, J. R.,
Phillips, G., Monks, P. S., Karunaharan, A., Hornsby, K. E.,
Nicolas-Perea, V., Coe, H., Gabey, A. M., Gallagher, M. W., Whalley, L. K.,
Edwards, P. M., Evans, M. J., Stone, D., Ingham, T., Commane, R.,
Furneaux, K. L., McQuaid, J. B., Nemitz, E., Seng, Y., Fowler, D.,
Pyle, J. A., and Hewitt, C. N.: The atmospheric chemistry of trace gases and
particulate matter emitted by different land uses in Borneo, Philos. T. R.
Soc. B, 366, 3177–3195, 2011.
Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the
atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13,
509–519, https://doi.org/10.5194/acp-13-509-2013, 2013a.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P.
O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.: Ozone
and organic nitrates over the eastern United States: Sensitivity to isoprene
chemistry. J. Geophys. Res. Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013.
MEA: Ecosystems and human well-being (Millenium Ecosystem Assessment, World
Health Organization), available at:
http://www.who.int/globalchange/ecosystems (last access:
23 October 2015), 2005.
Monson, R. K. and Holland, E. A.: Biospheric trace gas fluxes and their
control over tropospheric chemistry, Annu. Rev. Ecol. Syst., 32, 547–576,
2001.
Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric chemistry of
oxygenated volatile organic compounds: Impacts on air quality and climate,
Chem. Rev., 115, 3984–4014, https://doi.org/10.1021/cr500549n, 2015.
Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P.,
Morton, D., Collatz, G. J., DeFries, R. S., Hyer, E. J., Prins, E. M.,
Griffith, D. W. T., Wunch, D., Toon, G. C., Sherlock, V., and
Wennberg, P. O.: Daily and 3 hourly variability in global fire emissions and
consequences for atmospheric model predictions of carbon monoxide, J.
Geophys. Res.-Atmos., 116, D24303, https://doi.org/10.1029/2011JD016245, 2011.
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.:
Optimized regional and interannual variability of lightning in a global
chemical transport model constrained by LIS/OTD satellite data, J. Geophys.
Res.-Atmos., 117, D20307, https://doi.org/10.1029/2012JD017934, 2012.
Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E.,
Knyazikhin, Y., Didan, K., Fu, R., Negrón Juárez, R. I.,
Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V, Tan, B.,
Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P.,
Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous, N.,
Devadiga, S., Su, Y., and Salomonson, V. V: Large seasonal swings in leaf
area of Amazon rainforests, P. Natl. Acad. Sci. USA, 104, 4820–4823,
https://doi.org/10.1073/pnas.0611338104, 2007.
Norton, U., Ewers, B. E., Borkhuu, B., Brown, N. R., and Pendall, E.: Soil
nitrogen five years after bark beetle infestation in Lodgepole Pine Forests,
SOIL Sci. Soc. Am. J., 79, 282–293, https://doi.org/10.2134/csa2015-60-2-5, 2015.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585, 1996.
Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of
carbonaceous aerosols over the United States and implications for natural
visibility, J. Geophys. Res., 108, 4355, https://doi.org/10.1029/2002JD003190, 2003.
Park, R. J., Jacob, D. J., Field, B. D., and Yantosca, R. M.: Natural and
transboundary pollution influences on sulfate-nitrate-ammonium aerosols in
the United States: implications for policy, J. Geophys. Res., 109, D15204,
https://doi.org/10.1029/2003JD004473, 2004.
Park, R. J., Hong, S. K., Kwon, H.-A., Kim, S., Guenther, A., Woo, J.-H., and
Loughner, C. P.: An evaluation of ozone dry deposition simulations in East
Asia, Atmos. Chem. Phys., 14, 7929–7940, https://doi.org/10.5194/acp-14-7929-2014, 2014.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H.,
and Wennberg, P. O.: Isoprene photooxidation: new insights into the
production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501,
https://doi.org/10.5194/acp-9-1479-2009, 2009a.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St
Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide
formation in the gas-phase photooxidation of isoprene, Science, 325,
730–733, https://doi.org/10.1126/science.1172910, 2009b.
Pfeifer, E. M., Hicke, J. A., and Meddens, A. J. H.: Observations and
modeling of aboveground tree carbon stocks and fluxes following a bark beetle
outbreak in the western United States, Glob. Change Biol., 17, 339–350,
https://doi.org/10.1111/j.1365-2486.2010.02226.x, 2011.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C.,
Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M.,
Kabat, P., and de Noblet, N.: Land use/land cover changes and climate:
modeling analysis and observational evidence, Wiley Interdiscip. Rev. Clim.
Chang., 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Pleim, J. E., Xiu, A., Finkelstein, P. L., and Otte, T. L.: A coupled
land–surface and dry deposition model and comparison to field measurements
of surface heat, moisture, and ozone fluxes, Water Air Soil Pollut., 1,
243–252, https://doi.org/10.1023/A:1013123725860, 2001.
Porter, W. C., Barsanti, K. C., Baughman, E. C., and Rosenstiel, T. N.:
Considering the air quality impacts of bioenergy crop production: A case
study involving arundo donax, Environ. Sci. Tech., 46, 9777–9784,
2012.
Purves, D. W., Caspersen, J. P., Moorcroft, P. R., Hurtt, G. C., and
Pacala, S. W.: Human-induced changes in US biogenic volatile organic compound
emissions: evidence from long-term forest inventory data, Glob. Change Biol.,
10, 1737–1755, https://doi.org/10.1111/j.1365-2486.2004.00844.x, 2004.
Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H.: Global
modeling of organic aerosol: the importance of reactive nitrogen (NOx
and NO3), Atmos. Chem. Phys., 10, 11261–11276,
https://doi.org/10.5194/acp-10-11261-2010, 2010.
Rannik, Ü., Altimir, N., Mammarella, I., Bäck, J., Rinne, J.,
Ruuskanen, T. M., Hari, P., Vesala, T., and Kulmala, M.: Ozone deposition
into a boreal forest over a decade of observations: evaluating deposition
partitioning and driving variables, Atmos. Chem. Phys., 12, 12165–12182,
https://doi.org/10.5194/acp-12-12165-2012, 2012.
Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S.,
Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and Sesquiterpene
Emission Estimates for the United States, Environ. Sci. Technol., 42,
1623–1629, https://doi.org/10.1021/es702274e, 2008.
Schade, G. W. and Goldstein, A.: Increase of monoterpene emissions from
a pine plantation as a result of mechanical disturbances, Geophys. Res.
Lett., 30, 1380, https://doi.org/10.1029/2002GL016138, 2003.
Shuman, J. K., Shugart, H. H., and Krankina, O. N.: Testing individual-based
models of forest dynamics: issues and an example from the boreal forests of
Russia, Ecol. Model., 293, 102–110, https://doi.org/10.1016/j.ecolmodel.2013.10.028,
2014.
Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P.,
Rounsevell, M., Woods, J., Stehfest, E., and Bellarby, J.: Competition for
land., Philos. T. Roy. Soc. B., 365, 2941–2957, https://doi.org/10.1098/rstb.2010.0127,
2010.
Smith, W. B., Vissage, J. S., Darr, D. R., and Sheffield, R. M.: Forest
resources of the United States, 1997, St. Paul, M N, available at:
http://www.nrs.fs.fed.us/pubs/gtr/gtr_nc219.pdf (last access:
23 October 2015), 2001.
Steinkamp, J. and Lawrence, M. G.: Improvement and evaluation of simulated
global biogenic soil NO emissions in an AC-GCM, Atmos. Chem. Phys., 11,
6063–6082, https://doi.org/10.5194/acp-11-6063-2011, 2011.
Taylor, G. E., Johnson, D. W., and Andersen, C. P.: Air pollution and forest
ecosystems: a regional to global perspective, Ecol. Appl., 4, 662,
https://doi.org/10.2307/1941999, 1994.
Trahan, N. A., Dynes, E. L., Pugh, E., Moore, D. J. P., and Monson, R. K.:
Changes in soil biogeochemistry following disturbance by girdling and
mountain pine beetles in subalpine forests, Oecologia, 177, 981–95,
https://doi.org/10.1007/s00442-015-3227-4, 2015.
Unger, N.: Human land-use-driven reduction of forest volatiles cools global
climate, Nat. Clim. Chang., 4, 907–910, 2014.
van Donkelaar, A., Martin, R. V., Leaitch, W. R., Macdonald, A. M.,
Walker, T. W., Streets, D. G., Zhang, Q., Dunlea, E. J., Jimenez, J. L.,
Dibb, J. E., Huey, L. G., Weber, R., and Andreae, M. O.: Analysis of aircraft
and satellite measurements from the Intercontinental Chemical Transport
Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to
Canada, Atmos. Chem. Phys., 8, 2999–3014, https://doi.org/10.5194/acp-8-2999-2008, 2008.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109, 5–31,
https://doi.org/10.1007/s10584-011-0148-z, 2011.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of
tropospheric O-3-NOx-hydrocarbon chemistry 1. Model formulation, J. Geophys.
Res., 103, 10713–10725, https://doi.org/10.1029/98JD00158, 1998.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wiedinmyer, C., Tie, X., Guenther, A., Neilson, R., and Granier, C.: Future
Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and
Global Atmospheric Chemistry?, Earth Interact., 10, 1–19,
https://doi.org/10.1175/EI174.1, 2006.
Wolfe, G. M., Thornton, J. A., McKay, M., and Goldstein, A. H.:
Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic
VOC emissions and implications for in-canopy photochemistry, Atmos. Chem.
Phys., 11, 7875–7891, https://doi.org/10.5194/acp-11-7875-2011, 2011.
Wu, S., Mickley, L. J., Jacob, D. J., Rind, D., and Streets, D. G.: Effects
of 2000–2050 changes in climate and emissions on global tropospheric ozone
and the policy-relevant background surface ozone in the United States, J.
Geophys. Res., 113, D18312, https://doi.org/10.1029/2007JD009639, 2008.
Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J.: Impacts of changes
in land use and land cover on atmospheric chemistry and air quality over the
21st century, Atmos. Chem. Phys., 12, 1597–1609,
https://doi.org/10.5194/acp-12-1597-2012, 2012.
Wu, Z., Wang, X., Chen, F., Turnipseed, A. A., Guenther, A. B., Niyogi, D.,
Charusombat, U., Xia, B., William Munger, J., and Alapaty, K.: Evaluating the
calculated dry deposition velocities of reactive nitrogen oxides and ozone
from two community models over a temperate deciduous forest, Atmos. Environ.,
45, 2663–2674, 2011.
Yue, X., Mickley, L. J., Logan, J. A., Hudman, R. C., Martin, M. V., and
Yantosca, R. M.: Impact of 2050 climate change on North American wildfire:
consequences for ozone air quality, Atmos. Chem. Phys., 15, 10033–10055,
https://doi.org/10.5194/acp-15-10033-2015, 2015.
Zare, A., Christensen, J. H., Irannejad, P., and Brandt, J.: Evaluation of
two isoprene emission models for use in a long-range air pollution model,
Atmos. Chem. Phys., 12, 7399–7412, https://doi.org/10.5194/acp-12-7399-2012, 2012.
Zare, A., Christensen, J. H., Gross, A., Irannejad, P., Glasius, M., and
Brandt, J.: Quantifying the contributions of natural emissions to ozone and
total fine PM concentrations in the Northern Hemisphere, Atmos. Chem. Phys.,
14, 2735–2756, https://doi.org/10.5194/acp-14-2735-2014, 2014.
Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated
particle dry deposition scheme for an atmospheric aerosol module, Atmos.
Environ., 35, 549–560, https://doi.org/10.1016/s1352-2310(00)00326-5, 2001.
Zhang, X., Lei, Y., Ma, Z., Kneeshaw, D., and Peng, C.: Insect-induced tree
mortality of boreal forests in eastern Canada under a changing climate, Ecol.
Evol., 4, 2384–2394, https://doi.org/10.1002/ece3.988, 2014.
Short summary
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g., forestry management, agriculture, wildfires) can impact climate and air quality in many complex ways. Using a state-of-the-art chemistry model, we investigate how tree mortality in the US due to insect infestation and disease outbreak may impact atmospheric composition. We find that the surface concentrations of ozone and aerosol can be altered due to changing background emissions and loss processes.
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g.,...
Altmetrics
Final-revised paper
Preprint