Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5835-2015
https://doi.org/10.5194/acp-15-5835-2015
Research article
 | 
27 May 2015
Research article |  | 27 May 2015

Wind extraction potential from ensemble Kalman filter assimilation of stratospheric ozone using a global shallow water model

D. R. Allen, K. W. Hoppel, and D. D. Kuhl

Related authors

Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM
Douglas R. Allen, Karl W. Hoppel, and David D. Kuhl
Atmos. Chem. Phys., 18, 2999–3026, https://doi.org/10.5194/acp-18-2999-2018,https://doi.org/10.5194/acp-18-2999-2018, 2018
Short summary
20 years of ClO measurements in the Antarctic lower stratosphere
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016,https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Hybrid ensemble 4DVar assimilation of stratospheric ozone using a global shallow water model
Douglas R. Allen, Karl W. Hoppel, and David D. Kuhl
Atmos. Chem. Phys., 16, 8193–8204, https://doi.org/10.5194/acp-16-8193-2016,https://doi.org/10.5194/acp-16-8193-2016, 2016
Short summary
Wind extraction potential from 4D-Var assimilation of stratospheric O3, N2O, and H2O using a global shallow water model
D. R. Allen, K. W. Hoppel, and D. D. Kuhl
Atmos. Chem. Phys., 14, 3347–3360, https://doi.org/10.5194/acp-14-3347-2014,https://doi.org/10.5194/acp-14-3347-2014, 2014
Limitations of wind extraction from 4D-Var assimilation of ozone
D. R. Allen, K. W. Hoppel, G. E. Nedoluha, D. D. Kuhl, N. L. Baker, L. Xu, and T. E. Rosmond
Atmos. Chem. Phys., 13, 3501–3515, https://doi.org/10.5194/acp-13-3501-2013,https://doi.org/10.5194/acp-13-3501-2013, 2013

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Technical note: Multi-year changes in the Brewer–Dobson circulation from Halogen Occultation Experiment (HALOE) methane
Ellis Remsberg
Atmos. Chem. Phys., 24, 1691–1697, https://doi.org/10.5194/acp-24-1691-2024,https://doi.org/10.5194/acp-24-1691-2024, 2024
Short summary
Exploring the ENSO modulation of the QBO periods with GISS E2.2 models
Tiehan Zhou, Kevin J. DallaSanta, Clara Orbe, David H. Rind, Jeffrey A. Jonas, Larissa Nazarenko, Gavin A. Schmidt, and Gary Russell
Atmos. Chem. Phys., 24, 509–532, https://doi.org/10.5194/acp-24-509-2024,https://doi.org/10.5194/acp-24-509-2024, 2024
Short summary
The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
Helen Weierbach, Allegra N. LeGrande, and Kostas Tsigaridis
Atmos. Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023,https://doi.org/10.5194/acp-23-15491-2023, 2023
Short summary
Crucial role of obliquely propagating gravity waves in the quasi-biennial oscillation dynamics
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
EGUsphere, https://doi.org/10.5194/egusphere-2023-2663,https://doi.org/10.5194/egusphere-2023-2663, 2023
Short summary
Stratospherically induced circulation changes under the extreme conditions of the no-Montreal-Protocol scenario
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023,https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary

Cited articles

Allen, D. R., Hoppel, K. W., Nedoluha, G. E., Kuhl, D. D., Baker, N. L., Xu, L., and Rosmond, T. E.: Limitations of wind extraction from 4D-Var assimilation of ozone, Atmos. Chem. Phys., 13, 3501–3515, https://doi.org/10.5194/acp-13-3501-2013, 2013.
Allen, D. R., Hoppel, K. W., and Kuhl, D. D.: Wind extraction potential from 4D-Var assimilation of stratospheric O3, N2O, and H2O using a global shallow water model, Atmos. Chem. Phys., 14, 3347–3360, https://doi.org/10.5194/acp-14-3347-2014, 2014.
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59, 210–224, https://doi.org/10.1111/j.1600-0870.2006.00216.x, 2007.
Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. Roy. Meteor. Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, Inc., Orlando, Florida, USA, 1987.
Download
Short summary
While direct wind observations are routinely made in the troposphere (0-10km), in the stratosphere (above 10km) wind observations are sparse. This study examines the potential of using ozone observations to infer stratospheric wind. This novel approach is tested with a data assimilation system based on a simplified model of the atmosphere, the so-called "shallow water model". It is shown that assimilation of ozone observations significantly benefits winds, particularly in the tropics.
Altmetrics
Final-revised paper
Preprint