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Abstract. The feasibility of extracting wind information

from stratospheric ozone observations is tested using en-

semble Kalman filter (EnKF) data assimilation (DA) and a

global shallow water model that includes advection of an

ozone-like tracer. Simulated observations are created from a

truth run (TR) that resembles the Northern Hemisphere win-

ter stratosphere with a polar vortex disturbed by planetary-

scale wave forcing. Ozone observations mimic sampling of

a polar-orbiting satellite, while geopotential height observa-

tions are randomly placed in space and time. EnKF exper-

iments are performed assimilating ozone, height, or both,

over a 10-day period. The DA is also implemented using

two different pairs of flow variables: zonal and meridional

wind (EnKF-uv) and stream function and velocity potential

(EnKF-ψχ). Each experiment is tuned for optimal localiza-

tion length, while the ensemble spread is adaptively inflated

using the TR. The experiments are evaluated using the max-

imum wind extraction potential (WEP). Ozone only assimi-

lation improves winds (WEP = 46 % for EnKF-uv, and 58 %

for EnKF-ψχ), but suffers from spurious gravity wave gen-

eration. Application of nonlinear normal mode initialization

(NMI) greatly reduces the unwanted imbalance and increases

the WEP for EnKF-uv (84 %) and EnKF-ψχ (81 %). Assim-

ilation of only height observations also improved the winds

(WEP = 60 % for EnKF-uv, and 69 % for EnKF-ψχ), with

much less imbalance compared to the ozone experiment. The

assimilation of both height and ozone performed the best,

with WEP increasing to ∼ 87 % (∼ 90 % with NMI) for both

EnKF-uv and EnKF-ψχ , demonstrating that wind extraction

from ozone assimilation can be beneficial even in a data-rich

environment. Ozone assimilation particularly improves the

tropical winds, which are not well constrained by height ob-

servations due to lack of geostrophy.

1 Introduction

A key missing component of the global observing system

(GOS) is measurement of the three-dimensional global wind

(World Meteorological Organization, 2000). Upper air wind

observations from radiosondes, pilot reports, and cloud and

water-vapor feature tracking leave large gaps, particularly in

the tropics, Southern Ocean, and in most of the stratosphere

and mesosphere. Spaceborne Doppler wind lidar (DWL) has

been proposed as the potential “missing link” in the GOS

(Baker et al., 2014). When placed in low earth orbit, DWL

can provide daily global wind profiles throughout the tropo-

sphere and lower stratosphere (National Research Council,

2007). The Atmospheric Dynamics Mission (ADM-Aeolus)

(Stoffelen et al., 2005) will provide a proof of concept of

this capability. However, the measurements will be limited

to a single line-of-sight wind component, altitudes below

∼ 26 km, and simple along-track (as opposed to sweeping or

conical) sampling. While future spaceborne DWL missions

may provide improved observing capabilities, the technical

challenges make this a very difficult and expensive solution

to the problem of inadequate wind observations.

Another potential source of dynamical information comes

from assimilation of trace gas (tracer) observations in a 4-

D data assimilation system (DAS) that dynamically couples

tracer and wind. The investigation of algorithms to extract

wind information from tracers started with 1-D and 2-D sim-

ulations by Daley (1995, 1996) and Riishøjgaard (1996).

These studies showed that wind information could be ex-

tracted from tracer observations when the continuity equa-

tion was coupled to the dynamical equations via either a 4D-

Var (four-dimensional variational assimilation) algorithm or

an extended Kalman filter (EKF). Extensions to the full 3-D

atmosphere were performed in 4D-Var experiments by Peuch
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et al. (2000), Semane et al. (2009), and Allen et al. (2013).

These further supported the potential of tracer assimilation

to benefit the winds but also highlighted limitations due to

paucity of observations, insufficient data quality, and inade-

quate modeling of tracers in the forecast model, as well as

phenomenological limitations due to geophysical variability.

Assimilation of infrared and microwave humidity chan-

nels from geostationary and polar-orbiting satellites has been

shown to benefit tropospheric analyses and forecasts in

the European Centre for Medium-Range Weather Forecasts

(ECMWF) 4D-Var system (Andersson et al., 2007; Peubey

and McNally, 2009). Peubey and McNally (2009) isolated

the mechanisms whereby geostationary clear-sky radiances

can impact the wind analyses in 4D-Var and showed that

the dominant factor involves adjustment of the wind field

to match observed humidity features (the so-called “tracer

advection effect”). However, attempts to assimilate strato-

spheric ozone using 4D-Var algorithms and the resultant dy-

namical coupling have previously resulted in problems in

operational numerical weather prediction (NWP) (Han and

McNally, 2010; Dragani and McNally, 2013). These assim-

ilation challenges led Allen et al. (2014) to re-examine the

stratospheric tracer–wind problem at a more fundamental

level using 4D-Var assimilation studies with a shallow water

model (SWM) coupled to the tracer continuity equation. This

idealized system allowed Allen et al. (2014) to probe the lim-

its of wind extraction from assimilation of three readily mea-

sured long-lived tracers: ozone (O3), nitrous oxide (N2O),

and water vapor. It was shown that assimilation of global

hourly tracer data was sufficient to analyze the horizontal

wind components to a high degree of accuracy (∼ 0.3 m s−1

random error for O3 and N2O).

While 4D-Var couples tracers and dynamical variables

through the tangent linear model and its adjoint, the ini-

tial background error covariance normally does not include

tracer–wind correlations (these correlations develop implic-

itly over the assimilation window). This limitation may be

overcome by using an ensemble Kalman filter (EnKF) in

which the error covariance between tracer and wind is ex-

plicitly calculated by the ensemble statistics. Milewski and

Bourqui (2011) assimilated ozone and temperature profiles

in an EnKF system using a 3-D model at relatively low reso-

lution (spectral triangular truncation T21). They showed that

background error covariances are able to propagate infor-

mation from the observed variables to wind. In particular,

assimilation of either ozone or temperature observations in

a polar-orbiting sampling pattern significantly improved the

wind analysis. Another approach to enhancing the tracer–

wind interaction within 4D-Var is to blend the static covari-

ance with a flow-dependent ensemble covariance. This hy-

brid 4D-Var method is becoming increasingly popular at op-

erational NWP centers (Buehner et al., 2010; Bonavita et al.,

2012; Clayton et al., 2013; Kuhl et al., 2013; Kleist and Ide,

2015). We are developing a hybrid system within the SWM

framework to study tracer–wind interaction, which we plan

to present in a follow-up paper.

In this paper, we take a similar approach to Milewski and

Bourqui (2011), except that we use the SWM forecast model

(at T42 resolution), and we assimilate ozone and height (in

lieu of temperature for the SWM) observations, both sepa-

rately and together, to examine whether value is added by

assimilating ozone observations into a system already con-

strained by other observations. The SWM has been used in

both 4D-Var (Courtier and Talagrand, 1990; Polavarapu et

al., 2000; Jung et al., 2014) and EnKF (Kepert, 2009, 2011)

experiments, since it provides a sufficiently complex system

to simulate the key physical relations of the horizontal flow,

including both slow balanced and fast unbalanced modes. As

explained by Kepert (2009), the SWM provides a severe test

for assimilation, since the weak dissipation will not remove

imbalances introduced in the analysis; they will rather accu-

mulate with time.

One of the goals of the current study is to probe the lim-

its of ozone–wind extraction in an EnKF system. To accom-

plish this, it is necessary to quantify (and remove, if possi-

ble) spurious imbalance generated from noisy observations

and imperfect modeling of background error covariances. A

wide range of studies has been performed to examine bal-

ance in the context of 4-D data assimilation. For example,

Neef et al. (2006, 2009) investigated balance with a low-

order Lorenz-type model with the EKF and EnKF. Imbal-

ance within SWM-DAS systems was analyzed in both 4D-

Var (Courtier and Talagrand, 1990; Polavarapu et al., 2000)

and EnKF (Kepert, 2009, 2011) using digital filter and non-

linear normal mode initialization techniques. Mitchell and

Houtekamer (2002) considered the influence of covariance

localization on balance with a 3-D dry, global, primitive-

equation model. In all of these studies, imbalance was shown

to be a serious issue in 4-D DAS. None of these studies was

designed to examine balance in the context of the tracer as-

similation problem, however. As part of this study we attempt

to isolate and to the extent possible remove imbalance in or-

der to minimize the analysis errors and determine the extent

to which the wind can be constrained by ozone observations.

The layout of the paper is as follows. Section 2 describes

the SWM-DAS, including the forecast model, the EnKF, and

the normal mode initialization procedure. Section 3 describes

the experimental design and the error diagnostics. Section 4

presents the results and discussion from the three assimila-

tion experiments, and conclusions are provided in Sect. 5.

2 Model description

2.1 Forecast model

The forecast model is a spectral SWM based on the vorticity-

divergence formulation in Sect. 2a of Ritchie (1988), with the

inclusion of fourth-order semi-implicit diffusion applied to
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the vorticity, divergence, and geopotential. A spectral advec-

tion equation is coupled to the SWM, solving for the mix-

ing ratio of a passive tracer as a function of time using the

same fourth-order diffusion operator. We call the combined

four-equation system the shallow water model with tracer

(SWMT). The system is run at triangular truncation T42,

with model fields saved on the Gaussian grid (128 longitudes

× 64 latitudes, for a grid resolution of ∼ 2.8◦ at the Equa-

tor). The discretization uses a leap-frog time integration and

a semi-implicit approximation for terms that produce gravity

waves (Ritchie, 1988). To restart the model after assimilating

data, a forward Euler time stepping method is applied. The

global mean geopotential height H is specified to be 10 km,

resulting in a gravity wave speed (
√
gH , where g is earth’s

gravitational acceleration) of 313 m s−1. To avoid numerical

instability due to gravity waves, a short model time step of

120 s is used for all SWMT forecasts. The diffusion coeffi-

cient is set to 5.0× 1015 m4 s−1, which provides an e-folding

damping for the highest wave number of approximately 1

day.

2.2 Ensemble Kalman filter

To assimilate data into the SWMT system, we use the

“perturbed observations” EnKF (Houtekamer and Mitchell,

1998; Evenson, 2003). The system solves for Nens analysis

states using the Kalman filter equation for the state vector x

of size Nstate .

xa
i = xb

i +Kensd i, (1)

where a and b superscripts indicate analysis and background,

and i = 1...Nens is an index for ensemble member. d i =

yi −Hxb
i is the vector of innovations for member i, yi is the

vector of perturbed observations, and H is the (linear) obser-

vation operator. The ensemble-based Kalman gain matrix is

defined as follows:

Kens = Pb
ensH

T
[
HPb

ensH
T
+R

]−1

, (2)

with the ensemble background error covariance calculated by

Pb
ens =

1

Nens− 1

Nens∑
i=1

(
xb
i − xb

) (
xb
i − xb

)T

. (3)

Here the overbar indicates the ensemble mean and R is the

observation error covariance matrix. The background state

is calculated using the nonlinear SWMT forecast model M ,

subject to initial conditions

xb
i (tn)=M

[
xb
i (tn−1)

]
, (4)

where n is an index for model time (tn). Note that the SWMT

time step (120 s) is less than the analysis time step (20 min),

such that there are 10 forecast model time steps between

analyses. At each analysis time, which corresponds to the

end of the 20 min background forecast, all the observations

at that time are assimilated simultaneously as a single batch.

The EnKF analysis equation can be solved using differ-

ent combinations of state variables. In this study, we com-

pare results using zonal wind, meridional wind, height, and

ozone x =
[
u,v,z,q

]
(the EnKF-uv system), and results us-

ing stream function, velocity potential, height, and ozone

x =
[
ψ,χ,z,q

]
(the EnKF-ψχ system). The latter combina-

tion was shown by Kepert (2009) to result in better balance

of increments in a SWM-EnKF system with Schur product

localization (discussed further below). We will test this for

the SWMT system with ozone and height observations.

To avoid filter divergence, we apply a state space covari-

ance inflation factor (Anderson, 2007) to the background

ensemble before assimilating observations. The background

ensemble perturbations (xb
i − xb) are multiplied by a scalar

factor ξ to produce the inflated background ensemble

x
b, inf
i = ξ

(
xb
i − xb

)
+ xb, (5)

which alters the background error covariance (Eq. 3), but

leaves the background ensemble mean, xb, unchanged.

The inflation factor is designed to alter the global aver-

age SPREAD to match the global root mean square error

(RMSE) of either the vector wind (for EnKF-uv) or the

stream function (for EnKF-ψχ). The RMSE and SPREAD

for vector wind are defined as

VRMSE =

√√√√ 1

Nstate

Nstate∑
j=1

[
ub
j − u

TR
j

]2

+

[
vb
j − v

TR
j

]2

, (6)

VSPREAD =

√√√√ 1

(Nens− 1)Nstate

Nens∑
i=1

Nstate∑
j=1

[
ub
i,j − uj

] 2

+

[
vb
i,j − vj

]2

, (7)

where V represents the magnitude of the vector wind and TR

indicates the truth run (described in Sect. 3.1). For stream

function (ψ) the RMSE and SPREAD are defined as

ψRMSE =

√√√√ 1

Nstate

Nstate∑
j=1

[
ψb
j −ψ

TR
j

] 2

, (8)

ψSPREAD =

√√√√ 1

(Nens− 1)Nstate

Nens∑
i=1

Nstate∑
j=1

[
ψb
i,j −ψj

] 2

. (9)

The inflation factor is defined as either ξV =

VRMSE/VSPREAD or ξψ = ψRMSE/ψSPREAD. While the

inflation factor is calculated using only the wind or stream

function, it is applied to the entire state vector for each

ensemble member using Eq. (5). The calculations of RMSE

and SPREAD are not area-weighted and therefore may be

somewhat biased to match the higher latitudes, since the

Gaussian grid is used. This tuning takes a similar approach

to the 4D-Var simulations of Allen et al. (2014) in which
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the background error variances were modified to match

the global RMSE of the tracer and wind components. This

adaptive tuning provides a flexible way to examine how the

system behaves over a wide range or parameters, without

needing to separately tune the inflation factor for each case.

It is of course not practical in an operational setting, since

the true state is unknown, but for this idealized study it

works well to prevent filter divergence.

To avoid spurious long-range correlations, localization is

applied to the background error covariance. We apply the

element-wise (Schur product) approach (e.g., Houtekamer

and Mitchell, 2001) using Eq. (4.10) of Gaspari and Cohn

(1999). The localization matrix S is applied directly to the

background error covariance so the gain matrix becomes

Kens =

(
S ◦Pb

ens

)
HT
[
H
(

S ◦ Pb
ens

)
HT
+R

]−1

. (10)

To illustrate the ozone–wind interaction in the SWMT-EnKF

system, Fig. 1 shows the ensemble mean analysis incre-

ments Kensd̄ for assimilation of a single ozone observation at

120◦ E longitude, 40◦ N latitude for the EnKF-uv and EnKF-

ψχ systems. For the EnKF-ψχ , we convert the increments

to wind increments after the analysis step. Specification of

the initial 100-member ensemble for this system will be dis-

cussed in Sect. 3. The positive ensemble mean ozone inno-

vation (d̄ = 0.21 parts per million by volume, ppmv) results

in a positive ozone increment in the vicinity of the observa-

tion with maximum of 0.11 ppmv. Since the height correlates

positively with ozone, a positive height increment also occurs

(maximum of 84 m). Note that the ozone and height incre-

ments are similar for both systems, since these variables are

unchanged; slight differences are due to differences in tuning

of the background error covariances. The wind increments

are very different, however. While both show anticyclonic

circulation around the positive height increment, the winds

are much stronger in the EnKF-ψχ . As explained by Kepert

(2009, 2011), the weakening of the winds in the EnKF-uv

is due the effects of localization, which acts to decrease the

local balance. As shown below, this adversely affects the sys-

tem by generating spurious gravity waves.

2.3 Normal mode initialization

In general, analysis increments may project onto both slow

balanced modes and fast unbalanced modes. Unless there

is sufficient information in the background error covariance

to distribute increments in a balanced way, the unbalanced

modes will enter the system, and it may be difficult to remove

these modes with limited observations (Neef et al., 2006,

2009). To quantify the imbalance in the SWM-EnKF, we

use a nonlinear normal mode initialization (NMI) procedure

(Machenhauer, 1977), which has been used in NWP to re-

duce the impact of inertia gravity waves caused by imbalance

in the analysis increments (e.g., Kleist et al., 2009). While

digital filter initialization (e.g., Fillion et al., 1995) is more

commonly used in NWP today, NMI allows discriminating

between the gravity wave and rotational wave modes, which

is very useful in the SWM context. Kepert (2009) used NMI

to analyze imbalance caused by localization in the SWM-

EnKF framework and showed that while gravity waves can

be reduced by judicious choice of balance constraints, some

initialization may still be necessary in the EnKF (see also the

discussion in Lorenc, 2003).

For example, the single-observation increments in Fig. 1

result in unbalanced motions in both versions of the SWMT

system. Figure 2 shows the divergence anomalies due to the

single-observation increments. These anomalies propagate

radially outward from the observation location, as seen in

these maps at 2 h intervals. Maps at later times (not shown)

indicate that these oscillations propagate around the globe

in ∼ 1.5 days, consistent with waves traveling at the grav-

ity wave phase speed of this system. The EnKF-ψχ incre-

ments result in smaller divergence fields than the EnKF-uv;

the maximum divergence anomaly at 1200 s for the EnKF-

ψχ is∼ 13 % of that caused by the EnKF-uv, consistent with

less imbalance. However, initialization may still be necessary

in both systems to remove this spurious gravity “noise”.

To “initialize” the system (i.e., apply NMI to the analysis

state vector), we first need the normal modes (NMs) of the

SWM system. These were calculated using the formulation

outlined in Hogan et al. (1992). The resulting NM frequen-

cies are shown in Fig. 3 as a function of zonal wave number

and mode type. Negative (positive) wave numbers indicate

westward (eastward) propagating modes. These modes are

separated into westward and eastward gravity wave (GW)

and westward rotational wave (RW) modes. To balance the

GW modes, we apply the Machenhauer (1977) condition,

which reduces the time tendencies of the complex amplitudes

of the modes. We apply five iterations to solve the nonlinear

balance equation using a single 120 s time step for the calcu-

lation of the tendencies. We choose a linear cutoff frequency

of 1.0 day−1, which attempts to balance all traveling modes

except for one eastward wave 1 GW mode (see Fig. 3a).

In this study, we apply NMI to the ensemble-mean-

analyzed fields only as a post-processing diagnostic to quan-

tify the degree of imbalance. The goal is to tune the EnKF

system to minimize unwanted imbalance, without having to

rely on applying NMI within the DAS. One reason to avoid

initialization in the EnKF cycling is that it fails to distin-

guish real and spurious gravity waves and can therefore po-

tentially move the system away from the truth. Another rea-

son is that running NMI in the EnKF would involve initializ-

ing each ensemble member separately, since different modes

may be excited in each member due to the perturbed observa-

tions, which adds significantly to the computational expense.

In principle, if the unbalanced modes do not interact much

with the balanced components of the flow, then it should not

matter whether the balancing is done before or after the as-

similation. Williamson and Temperton (1981), using a mul-

tilevel global grid-point model, showed that forecasts made
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Figure 1. Analysis increments due to assimilation of a single ozone observation (time = 1200 s) at 120◦ E, 40◦ N (indicated by black dot)

using EnKF-uv (top row) and EnKF-ψχ (bottom row) with localization length L= 2000 km. Variables are given by column: zonal wind (u

[m s−1], column 1), meridional wind (v [m s−1], column 2), height (z [m], column 3), and ozone (q [ppmv], column 4). Red (blue) contours

indicate high (low) values for each variable.

Figure 2. Divergence anomalies [10−6 s−1] due to single-observation increments (see Fig. 1) at time= 1200, 8400, 15 600, and 22 800 s for

EnKF-uv (top row) and EnKF-ψχ (bottom row). Red (blue) contours indicate high (low) values of divergence.

with initialized data produced virtually identical results to

forecasts with uninitialized data followed by initialization.

This suggests that the high-frequency GWs do not interact

much with the low-frequency RWs, but rather can be largely

considered “noise” in the system that can, in principle, be

filtered out. To test whether this is true for the system run

here, we compared results using NMI cycling and NMI post-

processing for the optimal runs of the three experiments ex-

amined in Sect. 4. Differences in wind extraction potential

(defined in Sect. 3) were ∼ 1 % or less for all runs except

for height only assimilation with the EnKF-uv system, which

showed an improvement of 5 % for NMI cycling over NMI

post-processing. Assimilation of height observations is likely

more sensitive to GW noise, which impacts the height di-
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Figure 3. The normal mode frequencies [day−1] for the spectral

SWM at triangular truncation T42 as a function of zonal wave num-

ber (m) for the first six values of the meridional wave number

l = n− |m|, where n is the total wave number. Positive (negative)

values of m indicate eastward (westward) motion. Modes are sep-

arated into (a) eastward and westward gravity wave (GW) modes,

and (b) rotational wave (RW) modes. There are no rotational modes

for positive m (see Sect. 2.3). The cutoff frequency (1.0 day−1) for

the NMI is indicated by the dotted line. Note that the frequency

scales are different for the two plots for easier viewing.

rectly, while the tracer is only indirectly impacted via the di-

vergent component of the wind, which is small compared to

the rotational wind.

To illustrate the influence of NMI post-processing, Fig. 4

shows the true divergence along with the analyzed diver-

gence with and without NMI for a sample field 2 days into

an ozone assimilation run. Whereas the true divergence is

rather smooth, the uninitialized divergence shows consid-

erable noise. After applying NMI, the analyzed divergence

looks much more like the truth, indicating that the noise was

due largely to spurious unbalanced modes. We note that this

rather large improvement from application of NMI is partly

illustrating sensitivities in the SWM. Whereas in a full NWP

system physical and radiative processes may dampen the

gravity waves, in the SWM with weak diffusion the waves

can remain in the system for a long time, unless assimilated

data are at sufficient sampling frequency and precision to re-

solve the waves.

3 Experimental design

3.1 Truth run

The TR is designed to simulate Northern Hemisphere (NH)

winter conditions in the middle stratosphere (the same TR

was used in the 4D-Var tracer assimilation study by Allen et

al., 2014). The initial conditions for the SWMT include zero

meridional wind and a zonally symmetric zonal wind that

varies with latitude (φ) as u(φ)= umaxsin(2φ) in the NH

and is zero in the Southern Hemisphere (SH), with umax =

60 m s−1. The geopotential height is specified using the gra-

dient wind balance with a global mean height of 10 km.

The initial ozone is calculated using Aura Microwave Limb

Sounder (MLS) ozone data (Waters et al., 1999; Livesey et

al., 2011). The data are selected for a period with weak plan-

etary wave activity (1–15 March 2011) and are interpolated

to the 850 K isentropic level (approximately 32 km altitude

or 10 hPa), representative of middle stratosphere conditions.

The zonal mean and time mean mixing ratio as a function

of latitude was calculated for this period and interpolated to

the Gaussian grid. The ozone is treated as passive (i.e., no

chemical source/sink) and there is no radiative interaction be-

tween ozone and dynamics. Note that in the TR there are no

“restarts”, since it is a continuous free-running SWMT fore-

cast. Therefore, an assimilation cycling run, which restarts

with a forward Euler step after each 20 min analysis cy-

cle, would produce a slightly different result from the free-

running forecast (which uses leap-frog time integration for

all steps after the initial Euler step), even if no data were as-

similated. We could, in principle, stop and restart the TR with

a forward Euler step at the regular analysis time intervals,

as was done in Kepert (2009); however, test runs performed

with and without restarts in the TR resulted in negligible dif-

ferences.

To create a realistic scenario of the NH winter strato-

sphere, the TR is forced by the bottom topography being

raised and lowered to simulate planetary-scale waves (as in

Norton, 1994). A mountain with a height of 1250 m is created

with a 20-day cycle (4 days ramping up, 12 days constant,

and 4 days ramping down). The mountain is a zonal wave 1

feature that peaks at 45◦ N. The topography is turned off af-

ter 20 days. Since the assimilation period corresponds to days

20–30 of this TR, there is no surface topography during the

assimilation. NH maps of the ozone and height fields for the

TR are provided in Fig. 5a–f. On day 20, a strong anticyclone

(indicated by H) is present near 180◦ longitude, resembling

an “Aleutian High”, with elevated ozone values. The polar

vortex (indicated by L), identified by low ozone, is displaced

off the pole into a comma shape. Over the next 10 days, the

“Aleutian High” diminishes in strength and the vortex moves

over the pole. Strong ozone advection occurs throughout this

period. For example, a long tongue of lower ozone mixing ra-

tio forms around a secondary anticyclone centered near 60◦ E

longitude on day 28. This dynamical scenario produced by
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Figure 4. Divergence [10−6 s−1] maps for the (a) truth run (TR), (b) uninitialized analysis, and (c) initialized analysis from day 2 of

Experiment 1 with EnKF-uv and localization length L= 2000 km. For each plot, red (blue) contours indicate high (low) values.

topographic wave forcing in the SMWT provides a realis-

tic representation of the final stages of a stratospheric minor

warming (Limpasuvan et al., 2004). In the SH (Fig. 5g–l),

a strong anticyclone is centered just off the pole on day 20.

This anticyclone (H) propagates westward around the pole,

making one cycle over this 10-day period. A weaker cyclone

(L) also propagates westward around the pole opposite to the

anticyclone. The ozone is advected along with these features,

with relatively high (low) ozone in the anticyclone (cyclone).

The westward flow in the SH is consistent with the east-

erly summer flow in the middle stratosphere (Andrews et al.,

1987). Additional maps of potential vorticity and ozone for

this TR are provided in Fig. 2 of Allen et al. (2014).

3.2 Observations

Observations are simulated by sampling the TR ozone and

height fields using a bi-linear interpolation in latitude and

longitude. Gaussian random error is then added with a speci-

fied standard deviation (SD). The error SD for ozone was set

to 0.08 ppmv, which is 1 % of the initial global mean, while

the height error SD was set to 50 m. The height error can be

approximately related to stratospheric temperature error by

using a climatological estimate of the equator-to-pole gra-

dient of temperature with respect to geopotential height in

the NH winter middle stratosphere of∼ 5 K km−1. Using this

conversion factor, a 50 m error corresponds to∼ 0.25 K. Both

the ozone and height errors are smaller than those of any cur-

rent operational instrument. The goal here is not to evaluate

an actual observing system, but to demonstrate ozone–wind

extraction in an idealized system. The observation errors are

assumed to be uncorrelated, so the observation error covari-

ance R is diagonal with elements given by the square of the

error SDs.

Two sampling methods are performed (see Fig. 6). For

ozone, the observation locations are taken from real ozone

observations from the Aura MLS polar-orbiting satellite

Figure 5. Maps of ozone [ppmv] (colors) overlaid with height

(black lines) at 200 m intervals for days 20, 22, 24, 26, 28, and 30 of

the TR. (a–f) are NH and (g–l) are SH. The plots for day 20 include

longitude (latitude) grid lines at 90◦ (30◦) intervals, with 0◦, 90◦,

180◦, and 270◦ longitudes marked. The hemispheric maximum and

minimum heights are indicated by H and L, respectively. For each

plot, red (blue) contours indicate high (low) ozone values.
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Figure 6. Sampling patterns for 24 h of (a) polar-orbiting ozone

data and (b) pseudo-random height data.

(sampling frequency of ∼ 3450 observations per day). For

height, pseudo-random sampling in space and time is per-

formed to approximate the global coverage provided by mi-

crowave and infrared radiance sensors. For each successive

height observation, the sampling occurs at one of 3840 lati-

tude/longitude points on an icosahedral equal-area grid. This

allows the observations to not be too clumped together and

provides a way to scale upward to a global equal area grid

sampling, as was used in Allen et al. (2013). We choose

the average data frequency for the height observations to be

the same as the MLS sampling frequency (∼ 3450 day−1). In

time, the height observations occur randomly over 10 days.

For both observation types, the observation time is assigned

to the nearest 20 min interval (0, 20, or 40 min). Since the

analysis is performed sequentially every 20 min, time inter-

polation is not necessary for observations.

3.3 Assimilation experiments

We use 100 ensemble members for all experiments in this

paper. The initial ensemble perturbations are generated by

sampling the TR fields at 6 h intervals (starting day 21, 0 h)

and then removing the ensemble mean. The assimilation ex-

periments begin 20 days into the TR (day 20, 0 h) with the

initial ensemble defined as the ensemble perturbations added

to the TR field that is offset 6 h from the initial time (i.e., day

20, 6 h), which serves as the initial ensemble mean and de-

fines the initial analysis. This initial 6 h offset, or mismatch,

between the TR and the initial background fields is the source

of the initial background error. In Sect. 4 we present results

from three different experiments: (1) ozone only, (2) height

only, and (3) ozone and height. For each experiment, assimi-

lation runs were done for both EnKF-uv and EnKF-ψχ using

localization lengths from 1000 to 8000 km, in 500 km incre-

ments (note that ozone only experiments failed to converge

at the maximum localization length of 8000 km). Tuning the

length separately for each experiment and EnKF is necessary,

since the DA responds differently depending on the field(s)

observed and the analysis variables used. For each experi-

ment we use the same localization length for all state vari-

ables. Further optimization may occur by applying different

localization functions to different variables, but this is be-

yond the scope of this first study on tracer–wind interaction

using the EnKF. Since inflation is automatically adjusted in

a self-consistent manner with the TR, it does not require tun-

ing. Post-processing with NMI was also performed for each

run. We note here that the same forecast model is used for

the TR and for the assimilation experiments (i.e., “identical

twin” experiments), making results overly optimistic.

3.4 Error metrics

To diagnose the results, several error metrics are examined,

including the global RMSE (area-weighted) of the u, v, z,

and q, along with the wind extraction potential (WEP). Allen

et al. (2014) defined WEP as a normalized diagnostic of the

impact of tracer assimilation on the dynamics. The WEP is

determined by first calculating the analyzed RMSE of the

vector wind as a function of latitude and time (t):

VRMSE

(
φj , t

)
=

√[
uRMSE

(
φj , t

)]2
+
[
vRMSE

(
φj , t

)]2
, (11)

where

uRMSE

(
φj , t

)
=

√√√√Nlon∑
i=1

[
u
(
λi ,φj , t

)
− uTR

(
λi ,φj , t

)]2/
Nlon (12)

is the RMSE of the zonal wind calculated around a latitude

circle containingNlon longitude (λ) grid points and TR refers

to the truth run (the RMSE of the meridional wind, vRMSE, is

calculated similarly). Here i = 1... Nlon is an index for lon-

gitude and j = 1... Nlat is an index for latitude, both on the

Gaussian grid. The latitude dependence is shown explicitly

here, since we will examine errors as a function of latitude in

Sect. 4. The percentage difference in vector wind error rela-

tive to the initial error is then calculated,

VDIFF

(
φj , t

)
=

[
VRMSE

(
φj ,0

)
−VRMSE

(
φj , t

)
VRMSE

(
φj ,0

) ]
× 100%, (13)

and WEP is defined as the area-weighted global average of

this quantity, calculated using

WEP(t)=

Nlat∑
j=1

VDIFF

(
φj , t

)
cosφj

/
Nlat∑
j=1

cosφj , (14)

Atmos. Chem. Phys., 15, 5835–5850, 2015 www.atmos-chem-phys.net/15/5835/2015/



D. R. Allen et al.: Wind extraction from ensemble Kalman filter assimilation of stratospheric ozone 5843

where the summation is over all Nlat latitude grid points.

A WEP value of 100 % indicates the analysis equals the

truth (i.e., VRMSE

(
φj , t

)
= 0 at all latitudes). Although WEP

is relative to the initial error, and therefore will vary from

one experiment design to another, it provides a useful nor-

malized number for quantitative comparison between runs

using the same initial error. In this paper, all experiments

start with the same initial vector wind error with a global

mean value, ṼRMSE (0)= 4.55ms−1, so WEP can be com-

pared directly among all runs (tilde refers to the global area-

weighted mean). As a rule of thumb, an approximate conver-

sion from WEP to wind component error can be derived by

assuming RMS (root mean square) wind errors do not vary

with latitude and assuming zonal and meridional wind errors

are equal. This results in the following approximation:

ũRMSE (t)= ũRMSE (0)×
[
1−WEP(t)/100

]
. (15)

The initial global mean zonal wind RMSE, ũRMSE (0), is

∼ 3.3 m s−1, so WEP values of 50, 60, 70, 80, and 90 corre-

spond to approximate wind component errors of 1.65, 1.30,

1.00, 0.66, and 0.33 m s−1, respectively.

Experiment errors are generally presented as the “final”

error of the 10-day simulations. To reduce random noise,

the final errors are calculated as the average values over the

last 24 h of each simulation. To estimate the statistical un-

certainty in the final errors, Experiment 3 was repeated 10

times with different random observation perturbations, with

a localization of 3500 km. The SD of the final values was

∼ 0.5 % for WEP, ∼ 0.02 m s−1 for the wind components,

∼ 0.4 m for height, and ∼ 0.002 ppmv for ozone. The results

in Table 1 are presented with the number of significant digits

that reflect the uncertainties determined from this test.

The final diagnostic is designed to measure the amount of

gravity wave “noise” in the system, also called “imbalance”.

Imbalance is defined here using the uninitialized height zuninit

and initialized height zinit (i.e., after NMI has been applied).

As with WEP, we first calculate the RMS difference between

these two fields as a function of latitude,

zRMS

(
φj , t

)
=

√√√√Nlon∑
i=1

[
zuninit

(
λi ,φj , t

)
− zinit

(
λi ,φj , t

)]2/
Nlon, (16)

and then we calculate the area-weighted global mean,

Imbalance(t)=

Nlat∑
j=1

zRMS

(
φj , t

)
cosφj

/
Nlat∑
j=1

cosφj . (17)

We note here that the TR used in this paper contains neg-

ligible gravity wave amplitudes at frequencies higher than

1.0 day−1. The imbalance calculated by applying NMI to the

TR is less than 1 m. So any imbalance greater than ∼ 1 m is

due to spurious GW generation.

4 Results and discussion

4.1 Experiment 1: ozone only

In this section, we examine the performance of the SWMT-

EnKF system when ozone data are assimilated alone. Fig-

ure 7 shows time series of error diagnostics for the two “opti-

mal” runs from Experiment 1 (tuning of the covariance local-

ization to determine the optimal run is described later in this

section). Results are presented both for uninitialized (solid

lines) and initialized (NMI, dotted lines) output. The unini-

tialized WEP steadily increases before leveling off at final

values of ∼ 46 % for EnKF-uv and ∼ 58 % for EnKF-ψχ ,

with corresponding wind component errors of ∼ 1.6 m s−1

and ∼ 1.3 m s−1. Most of the improvement occurs during the

first 5 days. After applying NMI to these runs, the initialized

WEP increases significantly for both systems, indicating that

imbalance is limiting the wind improvement and error reduc-

tion.

The uninitialized height error for EnKF-uv levels out at

∼ 61 m while for EnKF-ψχ the uninitialized height error

reaches∼ 43 m. Much of the height error can be attributed to

GWs generated in the system. Figure 7e shows that the im-

balance starts near zero, but increases as GWs are introduced

into the system. For EnKF-uv, the imbalance rises rapidly

over the first 2 days until it nearly matches the uninitialized

height error. After this time, the further growth of GW is

likely restrained by the weak dissipation in the SWMT sys-

tem. For EnKF-ψχ , the imbalance grows more slowly but is

still close to the uninitialized height error at the end. Because

the uninitialized height error and imbalance are still increas-

ing at the end of 10 days, this suggests that the GWs have

not saturated for EnKF-ψχ . Application of NMI results in

dramatically reduced height errors for both systems. There is

an ∼ 1 day oscillation in the initialized height errors, which

is largely due to the one eastward-traveling GW mode that

is not initialized, which is present in the TR. The decreasing

amplitude of the oscillation with time suggests that this mode

is being resolved by the system through the ozone–wind ex-

traction.

The ozone errors (Fig. 7f) show a sharp decrease over the

first day, followed by a gradual decline. Although the errors

in the dynamical variables have leveled out by day 10, the

ozone errors appear to still be declining. Both runs show final

ozone errors smaller than the observation error of 0.08 ppmv.

As a global consistency check of the EnKF solution, we also

calculated

χ2 = d̄T
[
H
(

S ◦Pb
ens

)
HT
+R

]−1

d̄
/
Nobs, (18)

where d̄ is the ensemble mean innovation and Nobs is the

number of observations. For a well-tuned system, this “chi-

squared” diagnostic should equal 1 (Ménard et al., 2000).

Since the SPREAD is tuned to match a subset of the elements

of the state vector rather than the entire state vector, we do
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Table 1. Results for the optimal runs (i.e., maximum wind extraction potential, WEP) for each experiment. The localization length (L) is

provided along with WEP and global mean root mean square error (RMSE) for u, v, z, and q. NMI refers to normal mode initialization

applied to the analysis fields.

Experiment L WEP u error v error z error q error

[km] [%] [m s−1
] [m s−1

] [m] [ppmv]

1. Ozone

uv 1500 45.5 1.58 1.59 60.9 0.054

ψχ 2500 57.8 1.25 1.25 42.7 0.070

uv (NMI) 2000 83.7 0.55 0.46 14.4 0.047

ψχ (NMI) 3500 80.6 0.62 0.58 12.8 0.058

2. Height

uv 5000 59.5 1.27 1.38 11.6 0.179

ψχ 7000 68.8 0.96 1.05 7.8 0.150

uv (NMI) 5000 60.4 1.25 1.35 6.8 0.179

ψχ (NMI) 7000 69.1 0.95 1.04 6.1 0.150

3. Both

uv 3500 86.7 0.40 0.41 11.0 0.039

ψχ 3500 87.5 0.37 0.39 8.5 0.040

uv (NMI) 3500 90.1 0.32 0.31 2.6 0.039

ψχ (NMI) 4500 89.5 0.33 0.32 2.8 0.041

not expect χ2 to be exactly 1, but it should be relatively close,

at least in the time average. For these experiments, χ2 (not

shown) starts out slightly high, but levels out to a time mean

(averaged from 2 to 10 days) of 0.99 for EnKF-uv and 0.97

for EnKF-ψχ .

In Fig. 8, the analysis errors are projected onto the GW and

RW modes. As expected from the imbalance calculations,

the uninitialized EnKF-uv has much larger GW error due to

larger imbalance in the increments. However, the EnKF-uv

has slightly smaller RW errors. This is consistent with the

initialized EnKF-uv having slightly larger WEP than the ini-

tialized EnKF-ψχ (Fig. 7a). This difference may be partly

due to background error estimation biases caused by the ψχ -

localization, as discussed in Kepert (2009). These biases will

either overweigh or underweigh the background at different

scales, resulting in a suboptimal solution. We could try to

correct for this effect by altering the observation error co-

variance as in Kepert (2009), but this does not account for

the scale dependence of the bias. The situation in our case is

also complicated by the adaptive inflation, which uses differ-

ent state variables in EnKF-uv and EnKF-ψχ .

Figure 9 (column 1) presents several global error diagnos-

tics versus L for Experiment 1. We define the “optimal” runs

for each experiment as those that maximize WEP. These are

indicated by squares (triangles) for uninitialized (initialized)

results in Fig. 9a and are also listed in Table 1. In Fig. 9a

and b the uninitialized WEP and zonal wind errors (merid-

ional wind errors are very similar and are not shown) exhibit

strong dependence on L, with maximum WEP occurring at

L= 1500 km for EnKF-uv and L= 2500 km for EnKF-ψχ .

The optimal EnKF-ψχ run results in larger WEP and smaller

wind error compared EnKF-uv, which would appear to fa-

vor the choice of ψχ or uv. However, EnKF-ψχ is much

more sensitive to variations in L, with WEP values actually

becoming negative at small and large L.

Figure 9c shows a height error minimum at L= 2000 km

for uninitialized EnKF-ψχ , while for uninitialized EnKF-

uv the height error increases monotonically with L. The in-

crease of height error with L is driven by the increase of im-

balance with L, as seen in Fig. 9d. This increase in imbal-

ance with longer L when assimilating only ozone observa-

tions is a new finding, which is opposite to the tendency of

localization to create imbalance when assimilating dynami-

cal observations, as will be shown in Experiment 2 and dis-

cussed by Mitchell et al. (2002) and Kepert (2009, 2011).

It is likely that ozone observations cause increased imbal-

ance with L due to spurious ensemble correlation between

ozone and the dynamical variables at large distances, which

are projected onto the gravity modes. Up toL= 4000 km, the

EnKF-uv has larger imbalance than EnKF-ψχ , which is con-

sistent with the single-observation simulations. The ozone

errors (Fig. 9e) show a broad minimum, with the EnKF-uv

providing slightly better results at all L values.

After application of NMI, for both EnKF-uv and EnKF-

ψχ the wind and height errors are smaller and WEP is larger

at all values of L. The ozone error does not change, since the

NMI is applied only to the dynamical fields. The initialized

results show WEP maximizing at ∼ 84 % for EnKF-uv and

∼ 81 % for EnKF-ψχ (see triangles in Fig. 9a). The length

scales corresponding to these values increase to 2000 km for
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Figure 7. Diagnostics from optimal runs of Experiment 1: ozone only (L= 1500 km for EnKF-uv and L= 2500 km for EnKF-ψχ). (a) WEP

[%], (b), (c), and (d) RMSEs for u [m s−1], v [m s−1], and z [m], respectively, (e) imbalance [m], and (f) RMSE for q [ppmv]. EnKF-uv is

red and EnKF-ψχ is blue. Solid (dotted) lines indicate uninitialized (initialized) results (there are no dotted lines in (f) because the ozone

error does not change, since the NMI is applied only to the dynamical fields). In (f) the ozone observation error standard deviation is indicated

by the horizontal dotted line. Blue circles at day 0 indicate the initial values.

EnKF-uv and 3500 km for EnKF-ψχ , suggesting the corre-

lations at larger lengths are more reliable. That EnKF-uv out-

performs EnKF-ψχ when NMI is applied is consistent with

Kepert (2009), who showed that EnKF-uv (with NMI) re-

sulted in smaller height and wind errors than the EnKF-ψχ

(with NMI) due to background error estimation biases caused

by the ψχ localization.

Up to this point, we have examined globally averaged

analysis errors. To determine regional impact, we also ex-

amine how the errors vary with latitude for Experiment 1,

shown in Fig. 10 (column 1). The initial wind errors (black

lines in Fig. 10a and b) are largest in the NH tropics and mid-

latitudes and near the North Pole (global maps of initial wind

and height errors are provided in Fig. 3 of Allen et al., 2014).

After assimilating ozone, the uninitialized wind errors are re-

duced at most latitudes. Small increases in uninitialized zonal

wind error occur near 70◦ S and 70◦ N. That the tropical bias

has been removed is important, since the tropical winds are

not as well constrained in the stratosphere by radiance ob-

servations alone. The uninitialized height errors (Fig. 10c)

are more uniform after ozone assimilation and show slight

improvement in some regions. However, uninitialized height

errors have also increased over large portions of the globe,

particularly for EnKF-uv. This is due largely to the imbal-

ance generated by the ozone observations. Results with NMI

(dotted lines in Fig. 10a–c) show reduced height (and wind)

errors at all latitudes compared to the original analyses, due

to removal of spurious GW. Ozone errors (Fig. 10d) are also

reduced at all latitudes in this ozone assimilation experiment,

with slightly larger errors in the tropics.

4.2 Experiment 2: height only

We now examine the results of Experiment 2, when only

height data are assimilated. For both EnKF-uv and EnKF-

ψχ , Fig. 9 (column 2) shows that WEP initially increases

and wind errors decrease with less localization (larger L),

with optimal values occurring at L= 5000 km for EnKF-uv

and L= 7000 km for EnKF-ψχ , followed by a slight degra-

dation at larger lengths. The EnKF-ψχ generally performs

better than EnKF-uv. The minimum wind errors are ∼ 1.3

m s−1 for EnKF-uv and 1.0 m s−1 for EnKF-ψχ , which are

reasonable values for a well-constrained stratospheric analy-

sis. For example, Hertzog et al. (2004) compared NH strato-

spheric analyses with observations from long-duration bal-

loon flights and calculated error SDs of the zonal wind com-

ponents of ∼ 1.3 m s−1 for ECMWF and ∼ 1.9 m s−1 for

NCEP, when the observations were low-pass filtered to re-

move the variance due to inertia-gravity waves.
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Figure 8. RMSEs for u [m s−1], v [m s−1], and z [m] (columns 1, 2, and 3, respectively) for GW modes (row 1) and RW modes (row 2) for

the optimal runs of Experiment 1: ozone only with EnKF-uv (red) and EnKF-ψχ (blue). Solid (dotted) lines indicate uninitialized (initialized)

results.

The biggest difference between experiments 1 and 2 is

that assimilation of height observations results in much less

imbalance (note different vertical scales in Fig. 9d and i).

The imbalance, like the wind and height errors, generally de-

creases with less localization, which is opposite to what oc-

curred in Experiment 1. However, this is consistent with pre-

vious studies that have examined balance in the EnKF in the

context of assimilation of dynamical variables (e.g., Mitchell

et al., 2002). This result provides a caution that while reduc-

ing the localization may reduce imbalance for some obser-

vations, it may increase imbalance when assimilating ozone.

Applying NMI to the analyses results in almost no change to

the WEP and wind errors, but does improve the height errors,

particularly for EnKF-uv.

The errors as a function of latitude for Experiment 2 are

shown in Fig. 10 (column 2). The wind errors (Fig. 10e,

f) are largest in the tropics and decrease towards the poles.

This is expected, since the height is more strongly correlated

with wind in the extratropics due to geostrophic balance. In

the tropics this balance breaks down, and it is more difficult

for the EnKF to correct the winds with height observations

alone. The analyzed height errors (Fig. 10g) are markedly re-

duced from the initial errors, with slightly larger values in the

extratropics. Experiment 2 also improves the ozone, but only

by a small amount (Fig. 10h). The small ozone improvement

is in the extratropics, likely due to more accurate winds that

drive ozone advection.

4.3 Experiment 3: ozone and height

The final experiment examines the value of adding ozone as-

similation to the analyses produced by the height only as-

similation. The results as a function of L are shown in Fig. 9

(column 3). This experiment results in the smallest errors and

highest WEP values, confirming that ozone and height obser-

vations provide complimentary information to the DA sys-

tem. Large WEP values occur for a broad range of L, indicat-

ing that the results are not very sensitive to the choice of lo-

calization length. The lowest uninitialized wind errors occur

at L= 3500 km for both EnKF-uv and EnKF-ψχ , and the

maximum uninitialized WEP (∼ 87 %) is larger than when

either ozone or height are assimilated separately. The appli-

cation of NMI slightly increases the optimal WEP to ∼ 90 %

for both systems.

The uninitialized height error and imbalance for Experi-

ment 3 (Fig. 9m, n) show broad minima, which reflects the
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Figure 9. WEP [%] (row 1), RMSEs for u [m s−1], v [m s−1], z

[m], and q [ppmv] (rows 2, 3, and 5, respectively), and imbalance

[m] (row 4) as a function of L for experiments 1, 2, and 3 (columns

1, 2, and 3, respectively). Red is for EnKF-uv and blue is for EnKF-

ψχ . Solid (dotted) lines indicate uninitialized (initialized) results

(there are no dotted lines in row 5, because the ozone error does

not change, since the NMI is applied only to the dynamical fields).

The optimal runs (i.e., maximum WEP) values are highlighted with

squares (triangles) for uninitialized (initialized) results in row 1.

combined tendencies of the height observations to increase

imbalance at small L values and the ozone observations to

increase imbalance at large L values. The imbalance remains

relatively low in these experiments (< 20 m for L< 5000 km),

with the EnKF-uv showing somewhat higher values than

EnKF-ψχ . The error in initialized height (dashed lines of

Fig. 9m) does show a significant decrease, suggesting that

there is some GW noise in Experiment 3, but it is much less

than when ozone is assimilated alone. It appears that com-

bining height observations with ozone observations reduces

the GW that would otherwise be generated by the ozone ob-

servations alone.

The errors as a function of latitude for the optimal results

from Experiment 3 are presented in Fig. 10 (column 3). Wind

errors are quite small (< 0.5 m s−1) across the globe, with the

primary benefit occurring in the tropics, where wind errors

are much less than either Experiment 1 or 2. The ozone in

Experiment 3 is also better than in Experiment 1. Having a

Figure 10. RMSEs as a function of latitude for u [m s−1], v

[m s−1], z [m], and q [ppmv] (rows 1, 2, 3, and 4, respectively) for

the optimal runs (as shown in Table 1 and in the highlighted squares

of Fig. 9) of experiments 1, 2, and 3 (columns 1, 2, and 3, respec-

tively). Black lines show initial errors and red (blue) lines show

EnKF-uv (EnKF-ψχ) errors. Solid (dotted) lines indicate uninitial-

ized (initialized) results (there are no dotted lines in row 4 because

the ozone error does not change, since the NMI is applied only to

the dynamical fields).

better background ozone field (due to better winds) allows

for more efficient use of the ozone observations. This likely

provides a positive feedback in the system that enhances the

ozone impact. The addition of ozone also tends to flatten

height errors with latitude. Application of NMI does not im-

pact the wind errors very much, but does reduce the height

errors as seen in Fig. 10k.

Additional experiments (not shown) were performed with

a much smaller height error SD of 10 m. Decreasing the

height error for height only assimilation increased the max-

imum WEP to 84 % for EnKF-uv and 89 % for EnKF-ψχ .

The impact of adding ozone assimilation in these experi-

ments was also positive, increasing the maximum WEP to

92 % for EnKF-uv and 91 % for EnKF-ψχ , with most of the

wind improvements occurring in the tropics. These results

suggest that even in a very well-tuned system, high-quality

ozone observations can, in principle, improve the winds.
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5 Conclusions

The EnKF DA is able to employ cross-correlations between

state variables in the ensemble background states to couple

tracer and dynamical variables. This study examined sev-

eral aspects of extraction of wind information from EnKF

ozone assimilation using a SWM coupled with ozone ad-

vection. Three sets of experiments were performed that as-

similated ozone, geopotential height, or both. Modest im-

provements to the winds were observed when either ozone

or height were assimilated separately. Final WEP values of

46 % (58 %) were obtained for ozone and 60 % (69 %) for

height with the EnKF-uv (EnKF-ψχ) system. When NMI

was applied to the ozone experiment, WEP jumped to 84 %

(81 %), showing that gravity wave noise was generating sig-

nificant error. The NMI applied to the height experiment re-

sulted in WEP increases of less than 1 %, suggesting very

small imbalance.

When assimilating both ozone and height, WEP rose to

∼ 87 % for both systems. Imbalance was also much less than

when ozone was assimilated alone. The addition of height

observations appears to reduce the gravity wave noise in the

EnKF DA, thereby reducing the need for initialization. This

is important, since over-filtering could be a problem if NMI is

applied to the upper stratosphere/mesosphere (Sankey et al.,

2007) and the tropics (Nezlin et al., 2009), where unbalanced

modes play an important role in the real atmosphere (see also

Koshyk et al., 1999). Applying NMI to the combined exper-

iment resulted in a modest increase in WEP to ∼ 90 %. The

greatest impact of ozone assimilation on the winds was found

to occur in the tropics, which are less well constrained by

height assimilation due to lack of geostrophy.

This study also compared results from EnKF systems that

used different flow variables. While the EnKF-uv system

with ozone observations generated greater imbalance, this

system was also able to more accurately determine the wind

structure of the rotational wave modes. This may be due to

biases in the specification of the background error covariance

in the ENKF-ψχ , as discussed by Kepert (2009). As a result,

when NMI was applied, the EnKF-uv performed slightly bet-

ter than the EnKF-ψχ . For height assimilation, the EnKF-

ψχ performed better, due to less imbalance, while the com-

bined assimilation of ozone and height produced similar re-

sults in the two systems.

In each experiment the localization length was tuned to

maximize the wind extraction. Previous studies have shown

that tighter localization increases imbalance, which may be

detrimental. We showed that while this was the case for

height observations, for ozone observations the imbalance

actually increased with localization length. The cause is un-

certain, but may be due to spurious long-range correlations

between ozone and the dynamical fields, which project onto

the gravity modes of the SWM.

While under the ideal conditions used in this study WEP

values of up to ∼ 90 % were achieved (wind component er-

rors ∼ 0.3 m s−1), there are many challenges to demonstrat-

ing that the ozone–wind coupling in an operational DA sys-

tem can be beneficial. There are observation system chal-

lenges such as frequency, latency, precision, and bias. There

are also modeling challenges such as accurate ozone trans-

port, chemistry, and radiation. The results here were ob-

tained with a single-layer model, relatively low resolution

(T42), and a rather simple wave-forcing scenario. Given

these caveats, this study demonstrated ozone–wind interac-

tion in the EnKF and the potential for ozone assimilation to

benefit the wind analysis, particularly in the tropics.

Whether 4D-Var or EnKF is better for ozone–wind extrac-

tion is still an open question. In our previous work we showed

that wind extraction is feasible when assimilating globally

gridded hourly tracer data (ozone, nitrous oxide, or water va-

por) within 4D-Var. Follow-up experiments (not presented

here) indicate that ozone–wind extraction is also possible in

4D-Var assimilation of the ozone and height data used here.

In future work, we plan to directly compare 4D-Var, EnKF,

and hybrid methods for tracer–wind extraction.
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