Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5697-2015
https://doi.org/10.5194/acp-15-5697-2015
Research article
 | 
26 May 2015
Research article |  | 26 May 2015

Measuring and modeling mercury in the atmosphere: a critical review

M. S. Gustin, H. M. Amos, J. Huang, M. B. Miller, and K. Heidecorn

Related authors

Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations
Matthieu B. Miller, Sarrah M. Dunham-Cheatham, Mae Sexauer Gustin, and Grant C. Edwards
Atmos. Meas. Tech., 12, 1207–1217, https://doi.org/10.5194/amt-12-1207-2019,https://doi.org/10.5194/amt-12-1207-2019, 2019
Short summary
Reactive mercury flux measurements using cation exchange membranes
Matthieu B. Miller, Mae S. Gustin, and Grant C. Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-360,https://doi.org/10.5194/amt-2018-360, 2018
Revised manuscript not accepted
Short summary
Aggregated particles caused by instrument artifact
Ashley M. Pierce, S. Marcela Loría-Salazar, W. Patrick Arnott, Grant C. Edwards, Matthieu B. Miller, and Mae S. Gustin
Atmos. Meas. Tech., 11, 2225–2237, https://doi.org/10.5194/amt-11-2225-2018,https://doi.org/10.5194/amt-11-2225-2018, 2018
Short summary
A synthesis of research needs for improving the understanding of atmospheric mercury cycling
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017,https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA
Jiaoyan Huang, Matthieu B. Miller, Eric Edgerton, and Mae Sexauer Gustin
Atmos. Chem. Phys., 17, 1689–1698, https://doi.org/10.5194/acp-17-1689-2017,https://doi.org/10.5194/acp-17-1689-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Enhancing SO3 hydrolysis and nucleation: the role of formic sulfuric anhydride
Rui Wang, Rongrong Li, Shasha Chen, Ruxue Mu, Changming Zhang, Xiaohui Ma, Majid Khan, and Tianlei Zhang
Atmos. Chem. Phys., 25, 5695–5709, https://doi.org/10.5194/acp-25-5695-2025,https://doi.org/10.5194/acp-25-5695-2025, 2025
Short summary
Reactivity study of 3,3-dimethylbutanal and 3,3-dimethylbutanone: kinetics, reaction products, mechanisms, and atmospheric implications
Inmaculada Aranda, Sagrario Salgado, Beatriz Cabañas, Florentina Villanueva, and Pilar Martín
Atmos. Chem. Phys., 25, 5445–5468, https://doi.org/10.5194/acp-25-5445-2025,https://doi.org/10.5194/acp-25-5445-2025, 2025
Short summary
Spatially separate production of hydrogen oxides and nitric oxide in lightning
Jena M. Jenkins and William H. Brune
Atmos. Chem. Phys., 25, 5041–5052, https://doi.org/10.5194/acp-25-5041-2025,https://doi.org/10.5194/acp-25-5041-2025, 2025
Short summary
Gas-phase observations of accretion products from stabilized Criegee intermediates in terpene ozonolysis with two dicarboxylic acids
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025,https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Kinetics of the reactions of OH with CO, NO, and NO2 and of HO2 with NO2 in air at 1 atm pressure, room temperature, and tropospheric water vapour concentrations
Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 25, 3481–3502, https://doi.org/10.5194/acp-25-3481-2025,https://doi.org/10.5194/acp-25-3481-2025, 2025
Short summary

Cited articles

Aas, W. (Ed.).: Data quality 2004, quality assurance, and field comparisons, C587 EMEP/CCC-Report 4/2006, NILU, Kjeller, Norway 2006.
AMAP/UNEP: Technical Background Report for the Global Mercury Assessment 2013., Arctic Monitoring and Assessment Program, Oslo, Norway / UNEP Chemicals Branch, Geneva, Switzerland, VI, 263 pp., http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf (last access: 20 May 2015), 2013.
Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M., and Jaffe, D. A.: Fast Time Resolution Oxidized Mercury Measurements with the UW Detector for Oxidized Hg Species (DOHGS) during the Reno Atmospheric Mercury Intercomparison Experiment, Environ. Sci. Technol., 47, 7285–7294, 2013.
Barghigiani, C., Ristori, T., and Cortopassi, M.: Air mercury measurement and interference of atmospheric contaminants with gold traps, Environ. Technol., 12, 935–941, 1991.
Short summary
The Minamata Convention for mercury (Hg) has been signed by many nations and the primary objective is to protect human health and the environment from releases of Hg. A key challenge researchers is developing linkages between Hg in the atmosphere, deposition, and ecosystem contamination. Here we critically review where the science on measuring and modeling atmospheric Hg stands and offer suggestions for future research that will both advance understanding of Hg cycling and serve the convention.
Share
Altmetrics
Final-revised paper
Preprint