Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5697-2015
https://doi.org/10.5194/acp-15-5697-2015
Research article
 | 
26 May 2015
Research article |  | 26 May 2015

Measuring and modeling mercury in the atmosphere: a critical review

M. S. Gustin, H. M. Amos, J. Huang, M. B. Miller, and K. Heidecorn

Related authors

Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations
Matthieu B. Miller, Sarrah M. Dunham-Cheatham, Mae Sexauer Gustin, and Grant C. Edwards
Atmos. Meas. Tech., 12, 1207–1217, https://doi.org/10.5194/amt-12-1207-2019,https://doi.org/10.5194/amt-12-1207-2019, 2019
Short summary
Reactive mercury flux measurements using cation exchange membranes
Matthieu B. Miller, Mae S. Gustin, and Grant C. Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-360,https://doi.org/10.5194/amt-2018-360, 2018
Revised manuscript not accepted
Short summary
Aggregated particles caused by instrument artifact
Ashley M. Pierce, S. Marcela Loría-Salazar, W. Patrick Arnott, Grant C. Edwards, Matthieu B. Miller, and Mae S. Gustin
Atmos. Meas. Tech., 11, 2225–2237, https://doi.org/10.5194/amt-11-2225-2018,https://doi.org/10.5194/amt-11-2225-2018, 2018
Short summary
A synthesis of research needs for improving the understanding of atmospheric mercury cycling
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017,https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA
Jiaoyan Huang, Matthieu B. Miller, Eric Edgerton, and Mae Sexauer Gustin
Atmos. Chem. Phys., 17, 1689–1698, https://doi.org/10.5194/acp-17-1689-2017,https://doi.org/10.5194/acp-17-1689-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023,https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023,https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Atmospheric photooxidation and ozonolysis of sabinene: Reaction rate constants, product yields and chemical budget of radicals
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2023-1317,https://doi.org/10.5194/egusphere-2023-1317, 2023
Short summary
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023,https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Acylperoxy radicals during ozonolysis of α-pinene: composition, formation mechanism, and contribution to the production of highly oxygenated organic molecules
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-838,https://doi.org/10.5194/egusphere-2023-838, 2023
Short summary

Cited articles

Aas, W. (Ed.).: Data quality 2004, quality assurance, and field comparisons, C587 EMEP/CCC-Report 4/2006, NILU, Kjeller, Norway 2006.
AMAP/UNEP: Technical Background Report for the Global Mercury Assessment 2013., Arctic Monitoring and Assessment Program, Oslo, Norway / UNEP Chemicals Branch, Geneva, Switzerland, VI, 263 pp., http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf (last access: 20 May 2015), 2013.
Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M., and Jaffe, D. A.: Fast Time Resolution Oxidized Mercury Measurements with the UW Detector for Oxidized Hg Species (DOHGS) during the Reno Atmospheric Mercury Intercomparison Experiment, Environ. Sci. Technol., 47, 7285–7294, 2013.
Barghigiani, C., Ristori, T., and Cortopassi, M.: Air mercury measurement and interference of atmospheric contaminants with gold traps, Environ. Technol., 12, 935–941, 1991.
Short summary
The Minamata Convention for mercury (Hg) has been signed by many nations and the primary objective is to protect human health and the environment from releases of Hg. A key challenge researchers is developing linkages between Hg in the atmosphere, deposition, and ecosystem contamination. Here we critically review where the science on measuring and modeling atmospheric Hg stands and offer suggestions for future research that will both advance understanding of Hg cycling and serve the convention.
Altmetrics
Final-revised paper
Preprint