Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5627-2015
https://doi.org/10.5194/acp-15-5627-2015
Research article
 | 
21 May 2015
Research article |  | 21 May 2015

Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model

G. Kuhlmann, Y. F. Lam, H. M. Cheung, A. Hartl, J. C. H. Fung, P. W. Chan, and M. O. Wenig

Related authors

Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from synthetic satellite images of XCO2 and NO2
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amorós, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech., 18, 211–239, https://doi.org/10.5194/amt-18-211-2025,https://doi.org/10.5194/amt-18-211-2025, 2025
Short summary
Evidence of successful methane mitigation in one of Europe's most important oil production region
Gerrit Kuhlmann, Foteini Stavropoulou, Stefan Schwietzke, Daniel Zavala-Araiza, Andrew Thorpe, Andreas Hueni, Lukas Emmenegger, Andreea Calcan, Thomas Röckmann, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3494,https://doi.org/10.5194/egusphere-2024-3494, 2024
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-156,https://doi.org/10.5194/gmd-2024-156, 2024
Preprint under review for GMD
Short summary
A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations
Sandro Meier, Erik F. M. Koene, Maarten Krol, Dominik Brunner, Alexander Damm, and Gerrit Kuhlmann
Atmos. Chem. Phys., 24, 7667–7686, https://doi.org/10.5194/acp-24-7667-2024,https://doi.org/10.5194/acp-24-7667-2024, 2024
Short summary
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024,https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comparing space-based to reported carbon monoxide emission estimates for Europe's iron and steel plants
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ivar R. van der Velde, and Ilse Aben
Atmos. Chem. Phys., 25, 555–574, https://doi.org/10.5194/acp-25-555-2025,https://doi.org/10.5194/acp-25-555-2025, 2025
Short summary
Unleashing the potential of geostationary satellite observations in air quality forecasting through artificial intelligence techniques
Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu
Atmos. Chem. Phys., 25, 759–770, https://doi.org/10.5194/acp-25-759-2025,https://doi.org/10.5194/acp-25-759-2025, 2025
Short summary
Tropical upper-tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
Atmos. Chem. Phys., 25, 597–624, https://doi.org/10.5194/acp-25-597-2025,https://doi.org/10.5194/acp-25-597-2025, 2025
Short summary
Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
Atmos. Chem. Phys., 25, 575–596, https://doi.org/10.5194/acp-25-575-2025,https://doi.org/10.5194/acp-25-575-2025, 2025
Short summary
Opposing trends in the peak and low ozone concentrations in eastern China: anthropogenic and meteorological influences
Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu
Atmos. Chem. Phys., 25, 347–366, https://doi.org/10.5194/acp-25-347-2025,https://doi.org/10.5194/acp-25-347-2025, 2025
Short summary

Cited articles

Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2-O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004.
Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NOx production from GOME satellite observations, Atmos. Chem. Phys., 5, 2311–2331, https://doi.org/10.5194/acp-5-2311-2005, 2005.
Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.
Download
Short summary
Regional NO2 distributions can be simulated by models or retrieved from satellite observations. We developed a custom OMI NO2 data product for the Pearl River delta region which reduces biases compared to the standard product. The product is used for the evaluation of a regional air quality model for which it is a useful addition to ground measurements. The unbiased NO2 data product can be very helpful for air pollution studies in urban areas.
Altmetrics
Final-revised paper
Preprint