Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 15, issue 6
Atmos. Chem. Phys., 15, 3517–3526, 2015
https://doi.org/10.5194/acp-15-3517-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 3517–3526, 2015
https://doi.org/10.5194/acp-15-3517-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Mar 2015

Research article | 31 Mar 2015

The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

T. Wang et al.

Related authors

Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019,https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017,https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region
Kai Zhang, Rong Fu, Tao Wang, and Yimin Liu
Atmos. Chem. Phys., 16, 7825–7835, https://doi.org/10.5194/acp-16-7825-2016,https://doi.org/10.5194/acp-16-7825-2016, 2016
Short summary
Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison
Atmos. Chem. Phys., 14, 7135–7147, https://doi.org/10.5194/acp-14-7135-2014,https://doi.org/10.5194/acp-14-7135-2014, 2014
Modeling upper tropospheric and lower stratospheric water vapor anomalies
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013,https://doi.org/10.5194/acp-13-7783-2013, 2013

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses
Aurélien Podglajen, Albert Hertzog, Riwal Plougonven, and Bernard Legras
Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020,https://doi.org/10.5194/acp-20-9331-2020, 2020
Short summary
Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020,https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
A convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020,https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020,https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020,https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary

Cited articles

Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, Orlando, Florida, 489 pp., 1987.
Beyerle, G., Schmidt, T., Michalak, G., Heise, S., Wickert, J., and Reigber, Ch.: GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique, Geophys. Res. Lett., 32, L13806, https://doi.org/10.1029/2005GL023109, 2005.
Bowman, K. P.: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds, J. Geophys. Res., 98, 23013–23027, 1993.
Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input data requirements Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013.
Publications Copernicus
Download
Short summary
We investigated the impacts of vertical temperature structures on trajectory simulations of stratospheric dehydration and water vapor by using 1) MERRA temperatures on model levels; 2) GPS temperatures at finer vertical resolutions; and 3) adjusted MERRA temperatures with finer vertical structures induced by waves. We show that despite the fact that temperatures at finer vertical structures tend to dry air by 0.1-0.3ppmv, the interannual variability in different runs is essentially the same.
We investigated the impacts of vertical temperature structures on trajectory simulations of...
Citation
Altmetrics
Final-revised paper
Preprint