Articles | Volume 15, issue 6
Atmos. Chem. Phys., 15, 3517–3526, 2015
https://doi.org/10.5194/acp-15-3517-2015
Atmos. Chem. Phys., 15, 3517–3526, 2015
https://doi.org/10.5194/acp-15-3517-2015
Research article
31 Mar 2015
Research article | 31 Mar 2015

The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

T. Wang et al.

Related authors

Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019,https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017,https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region
Kai Zhang, Rong Fu, Tao Wang, and Yimin Liu
Atmos. Chem. Phys., 16, 7825–7835, https://doi.org/10.5194/acp-16-7825-2016,https://doi.org/10.5194/acp-16-7825-2016, 2016
Short summary
Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison
Atmos. Chem. Phys., 14, 7135–7147, https://doi.org/10.5194/acp-14-7135-2014,https://doi.org/10.5194/acp-14-7135-2014, 2014
Modeling upper tropospheric and lower stratospheric water vapor anomalies
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013,https://doi.org/10.5194/acp-13-7783-2013, 2013

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022,https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022,https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022,https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022,https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022,https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary

Cited articles

Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, Orlando, Florida, 489 pp., 1987.
Beyerle, G., Schmidt, T., Michalak, G., Heise, S., Wickert, J., and Reigber, Ch.: GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique, Geophys. Res. Lett., 32, L13806, https://doi.org/10.1029/2005GL023109, 2005.
Bowman, K. P.: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds, J. Geophys. Res., 98, 23013–23027, 1993.
Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input data requirements Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013.
Download
Short summary
We investigated the impacts of vertical temperature structures on trajectory simulations of stratospheric dehydration and water vapor by using 1) MERRA temperatures on model levels; 2) GPS temperatures at finer vertical resolutions; and 3) adjusted MERRA temperatures with finer vertical structures induced by waves. We show that despite the fact that temperatures at finer vertical structures tend to dry air by 0.1-0.3ppmv, the interannual variability in different runs is essentially the same.
Altmetrics
Final-revised paper
Preprint