Articles | Volume 15, issue 19
https://doi.org/10.5194/acp-15-11027-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-11027-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
A. A. May
Department of Civil, Environmental and Geodetic Engineering, the Ohio State University, Columbus, OH, USA
S. M. Kreidenweis
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
J. R. Pierce
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
Related authors
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Anton Kliewer, Milija Zupanski, Qijing Bian, Sam Atwood, Yi Wang, and Jun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1156, https://doi.org/10.5194/acp-2018-1156, 2018
Revised manuscript not accepted
Short summary
Short summary
This research is focused on improving numerical weather prediction by including data regarding aerosols in the atmosphere. Using weather prediction models along with data assimilation (the process of marrying observations with a model prediction), a better representation of the atmosphere can be described. As no model or observational platform is ever perfect, the aerosol observations have to be de-biased (adjusting for systematic error). Here we look at two such methods.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
Qijing Bian, Badr Alharbi, Mohammed M. Shareef, Tahir Husain, Mohammad J. Pasha, Samuel A. Atwood, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 18, 3969–3985, https://doi.org/10.5194/acp-18-3969-2018, https://doi.org/10.5194/acp-18-3969-2018, 2018
Short summary
Short summary
We report long-term and spatially resolved hourly measurements of organic carbon (OC) and elemental carbon (EC) concentrations in ambient particulate matter in Riyadh, Saudi Arabia. Our analysis suggests both local vehicular emissions and regional sources (e.g., oil extraction and refining) were strong influences. Our work informs the development of pollution control strategies for Riyadh.
Qijing Bian, Shantanu H. Jathar, John K. Kodros, Kelley C. Barsanti, Lindsay E. Hatch, Andrew A. May, Sonia M. Kreidenweis, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017, https://doi.org/10.5194/acp-17-5459-2017, 2017
Short summary
Short summary
In this paper, we perform simulations of the evolution of biomass-burning organic aerosol in laboratory smog-chamber experiments and ambient plumes. We find that in smog-chamber experiments, vapor wall losses lead to a large reduction in the apparent secondary organic aerosol formation. In ambient plumes, fire size and meteorology regulate the plume dilution rate, primary organic aerosol evaporation rate, and secondary organic aerosol formation rate.
X. H. H. Huang, Q. J. Bian, P. K. K. Louie, and J. Z. Yu
Atmos. Chem. Phys., 14, 9279–9293, https://doi.org/10.5194/acp-14-9279-2014, https://doi.org/10.5194/acp-14-9279-2014, 2014
Q. Bian, X. H. H. Huang, and J. Z. Yu
Atmos. Chem. Phys., 14, 9013–9027, https://doi.org/10.5194/acp-14-9013-2014, https://doi.org/10.5194/acp-14-9013-2014, 2014
Haihui Zhu, Randall Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey Pierce, Rachel Chang, Bruce Anderson, Luke Ziemba, Johnathan Hair, Richard Ferrare, Chris Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose Jimenez, Pedro Campuzano-Jost, Benjamin Nault, Jack Dibb, Joshua Schwarz, and Andrew Weinheimer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1292, https://doi.org/10.5194/egusphere-2022-1292, 2022
Short summary
Short summary
Particle size of atmospheric aerosol is important for many fields, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size and improves the agreement between modeled and ground-measured aerosol optical depth.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1107, https://doi.org/10.5194/egusphere-2022-1107, 2022
Short summary
Short summary
Air quality in the US has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfires pollution in the western US in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we use a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western US.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Russell J. Perkins, Peter J. Marinescu, Ezra J. T. Levin, Don R. Collins, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 22, 6197–6215, https://doi.org/10.5194/acp-22-6197-2022, https://doi.org/10.5194/acp-22-6197-2022, 2022
Short summary
Short summary
We used 5 years (2009–2013) of aerosol and cloud condensation nuclei (CCN) data from a total of seven instruments housed at the Southern Great Plains site, which were merged into a quality-controlled, continuous dataset of CCN spectra at ~45 min resolution. The data cover all seasons, are representative of a rural, agricultural mid-continental site, and are useful for model initialization and validation. Our analysis of this dataset focuses on seasonal and hourly variability.
Mathew Sebastian, Sobhan Kumar Kompalli, Vasudevan Anil Kumar, Sandhya Jose, S. Suresh Babu, Govindan Pandithurai, Sachchidanand Singh, Rakesh K. Hooda, Vijay K. Soni, Jeffrey R. Pierce, Ville Vakkari, Eija Asmi, Daniel M. Westervelt, Antti-Pekka Hyvärinen, and Vijay P. Kanawade
Atmos. Chem. Phys., 22, 4491–4508, https://doi.org/10.5194/acp-22-4491-2022, https://doi.org/10.5194/acp-22-4491-2022, 2022
Short summary
Short summary
Characteristics of particle number size distributions and new particle formation in six locations in India were analyzed. New particle formation occurred frequently during the pre-monsoon (spring) season and it significantly modulates the shape of the particle number size distributions. The contribution of newly formed particles to cloud condensation nuclei concentrations was ~3 times higher in urban locations than in mountain background locations.
Michael Cheeseman, Bonne Ford, Zoey Rosen, Eric Wendt, Alex DesRosiers, Aaron J. Hill, Christian L'Orange, Casey Quinn, Marilee Long, Shantanu H. Jathar, John Volckens, and Jeffrey R. Pierce
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-751, https://doi.org/10.5194/acp-2021-751, 2021
Revised manuscript not accepted
Short summary
Short summary
This article predicts concentrations of airborne particulate matter over wintertime Denver, CO, USA, using meteorological and geographic information, as well as low-cost aerosol optical depth (AOD) measurements captured by citizen scientists. Machine learning methods revealed that low boundary layer heights and stagnant air were the best predictors of poor air quality, while AOD provided little skill in predicting particulate matter for this location and time period.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Agnieszka Kupc, Christina J. Williamson, Anna L. Hodshire, Jan Kazil, Eric Ray, T. Paul Bui, Maximilian Dollner, Karl D. Froyd, Kathryn McKain, Andrew Rollins, Gregory P. Schill, Alexander Thames, Bernadett B. Weinzierl, Jeffrey R. Pierce, and Charles A. Brock
Atmos. Chem. Phys., 20, 15037–15060, https://doi.org/10.5194/acp-20-15037-2020, https://doi.org/10.5194/acp-20-15037-2020, 2020
Short summary
Short summary
Tropical upper troposphere over the Atlantic and Pacific oceans is a major source region of new particles. These particles are associated with the outflow from deep convection. We investigate the processes that govern the formation of these particles and their initial growth and show that none of the formation schemes commonly used in global models are consistent with observations. Using newer schemes indicates that organic compounds are likely important as nucleating and initial growth agents.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Chantelle R. Lonsdale, Matthew J. Alvarado, Anna L. Hodshire, Emily Ramnarine, and Jeffrey R. Pierce
Geosci. Model Dev., 13, 4579–4593, https://doi.org/10.5194/gmd-13-4579-2020, https://doi.org/10.5194/gmd-13-4579-2020, 2020
Short summary
Short summary
The System for Atmospheric Modelling (SAM) has been coupled with the detailed gas/aerosol chemistry model, the Aerosol Simulation Program (ASP), to capture cross-plume concentration gradients as fire plumes evolve downwind. SAM-ASP v1.0 will lead to the development of parameterizations of near-source biomass burning chemistry that can be used to more accurately simulate biomass burning chemical and physical transformations of trace gases and aerosols within coarser chemical transport models.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Hanyang Li, Gavin R. McMeeking, and Andrew A. May
Atmos. Meas. Tech., 13, 2865–2886, https://doi.org/10.5194/amt-13-2865-2020, https://doi.org/10.5194/amt-13-2865-2020, 2020
Short summary
Short summary
We present a new correction algorithm that addresses biases in measurements of aerosol light absorption by filter-based photometers, incorporating the transmission of light through the filter and some aerosol optical properties. It was developed using biomass burning aerosols and tested using rural ambient aerosols. This new algorithm is applicable to any filter-based photometer, resulting in good agreement between different colocated instruments in both the laboratory and the field.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Bonne Ford, Jeffrey R. Pierce, Eric Wendt, Marilee Long, Shantanu Jathar, John Mehaffy, Jessica Tryner, Casey Quinn, Lizette van Zyl, Christian L'Orange, Daniel Miller-Lionberg, and John Volckens
Atmos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-12-6385-2019, https://doi.org/10.5194/amt-12-6385-2019, 2019
Short summary
Short summary
This study demonstrates the use of a low-cost sensor in a citizen-science network, Citizen-Enabled Aerosol Measurements for Satellites (CEAMS), to measure air quality in participants’ backyards. The pilot network was conducted in the fall and winter of 2017 in northern Colorado. Measurements of aerosols taken by the citizens are also compared to standard air quality instruments.
Eric A. Wendt, Casey W. Quinn, Daniel D. Miller-Lionberg, Jessica Tryner, Christian L'Orange, Bonne Ford, Azer P. Yalin, Jeffrey R. Pierce, Shantanu Jathar, and John Volckens
Atmos. Meas. Tech., 12, 5431–5441, https://doi.org/10.5194/amt-12-5431-2019, https://doi.org/10.5194/amt-12-5431-2019, 2019
Short summary
Short summary
We introduce a low-cost, compact device (aerosol mass and optical depth (AMOD) sampler) that can be used by citizen scientists to measure air quality. Our paper discusses the development and different components for measuring aerosols. It also shows that measurements made by the AMOD next to reference-grade monitors agreed within 10 %. Coupled with the cost of these instruments, this agreement demonstrates that the AMOD can be widely deployed to monitor air quality by citizen scientists.
Peter J. Marinescu, Ezra J. T. Levin, Don Collins, Sonia M. Kreidenweis, and Susan C. van den Heever
Atmos. Chem. Phys., 19, 11985–12006, https://doi.org/10.5194/acp-19-11985-2019, https://doi.org/10.5194/acp-19-11985-2019, 2019
Short summary
Short summary
We characterized and provided fits for the seasonal aerosol size distributions (7 nm–14 µm diameter) at a North American, long–term surface site (SGP), which can be applied to models. Key cycles on timescales of several hours to weeks were also assessed using power spectra for various aerosol size ranges. One key finding is the consistent presence of diurnal cycles in the smallest particles in each season, providing insights into the formation and roles of new particle formation at SGP.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Stephen M. Saleeby, Susan C. van den Heever, Jennie Bukowski, Annette L. Walker, Jeremy E. Solbrig, Samuel A. Atwood, Qijing Bian, Sonia M. Kreidenweis, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys., 19, 10279–10301, https://doi.org/10.5194/acp-19-10279-2019, https://doi.org/10.5194/acp-19-10279-2019, 2019
Short summary
Short summary
This study seeks to understand how intense dust storms impact the heating and cooling of the land surface and atmosphere. Dust storms that are intense enough to substantially impact visibility can also alter how much sunlight reaches the surface during the day and how much heat is trapped in the atmosphere at night. These radiation changes can impact the temperature of the atmosphere and impact the weather in the vicinity.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Samuel A. Atwood, Sonia M. Kreidenweis, Paul J. DeMott, Markus D. Petters, Gavin C. Cornwell, Andrew C. Martin, and Kathryn A. Moore
Atmos. Chem. Phys., 19, 6931–6947, https://doi.org/10.5194/acp-19-6931-2019, https://doi.org/10.5194/acp-19-6931-2019, 2019
Short summary
Short summary
This paper presents measurements of aerosol particles at a coastal location. The particles were classified into distinct aerosol types using both microphysical measurements and meteorological information, allowing rapid changes between the aerosol types to be reliably identified. These particles can alter cloud and precipitation processes, and inclusion of the differences between types can improve atmospheric models and remote sensing retrievals in littoral zones.
Emily Ramnarine, John K. Kodros, Anna L. Hodshire, Chantelle R. Lonsdale, Matthew J. Alvarado, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 6561–6577, https://doi.org/10.5194/acp-19-6561-2019, https://doi.org/10.5194/acp-19-6561-2019, 2019
Short summary
Short summary
Biomass burning aerosols have important global radiative effects that depend on particle size. However, model estimates of these effects do not explicitly account for the coagulation of particles in biomass burning plumes. In this work, we present the first use of a sub-grid coagulation scheme in a global aerosol model to account for in-plume coagulation. We find that this in-plume coagulation leads to important changes in the biomass burning aerosol radiative effects.
Anna L. Hodshire, Pedro Campuzano-Jost, John K. Kodros, Betty Croft, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, https://doi.org/10.5194/acp-19-3137-2019, 2019
Short summary
Short summary
A global chemical-transport model is used to determine the impact of methanesulfonic acid (MSA) on the aerosol size distribution and associated radiative effects, testing varying assumptions of MSA’s effective volatility and nucleating ability. We find that MSA mass best matches the ATom airborne measurements when volatility varies as a function of temperature, relative humidity, and available gas-phase bases, and the MSA radiative forcing is on the order of -50 mW m-2 over the Southern Ocean.
Betty Croft, Randall V. Martin, W. Richard Leaitch, Julia Burkart, Rachel Y.-W. Chang, Douglas B. Collins, Patrick L. Hayes, Anna L. Hodshire, Lin Huang, John K. Kodros, Alexander Moravek, Emma L. Mungall, Jennifer G. Murphy, Sangeeta Sharma, Samantha Tremblay, Gregory R. Wentworth, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019, https://doi.org/10.5194/acp-19-2787-2019, 2019
Short summary
Short summary
Summertime Arctic atmospheric aerosols are strongly controlled by processes related to natural regional sources. We use a chemical transport model with size-resolved aerosol microphysics to interpret measurements made during summertime 2016 in the Canadian Arctic Archipelago. Our results explore the processes that control summertime aerosol size distributions and support a climate-relevant role for Arctic marine secondary organic aerosol formed from precursor vapors with Arctic marine sources.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
Short summary
The interaction of particles with the chamber walls has been a significant source of uncertainty when analyzing results of secondary organic aerosol formation experiments performed in Teflon chambers. We evaluated the performance of several particle wall-loss correction methods for aging experiments of α-pinene ozonolysis products. Experimental procedures are proposed for the characterization of particle losses during different stages of these experiments.
Anton Kliewer, Milija Zupanski, Qijing Bian, Sam Atwood, Yi Wang, and Jun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1156, https://doi.org/10.5194/acp-2018-1156, 2018
Revised manuscript not accepted
Short summary
Short summary
This research is focused on improving numerical weather prediction by including data regarding aerosols in the atmosphere. Using weather prediction models along with data assimilation (the process of marrying observations with a model prediction), a better representation of the atmosphere can be described. As no model or observational platform is ever perfect, the aerosol observations have to be de-biased (adjusting for systematic error). Here we look at two such methods.
Kaitlyn J. Suski, Tom C. J. Hill, Ezra J. T. Levin, Anna Miller, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 18, 13755–13771, https://doi.org/10.5194/acp-18-13755-2018, https://doi.org/10.5194/acp-18-13755-2018, 2018
Short summary
Short summary
The harvesting of crops emits large amounts of particles into the air. These particles can form and interact with clouds to alter cloud properties and precipitation, but the magnitude of these effects is unknown. This study looked at the ability of harvest particles to form ice in clouds by sampling with an ice nucleation chamber downwind of fields being harvested. Some crops emitted large amounts of ice-nucleating particles, and harvest emissions are mixtures of organics, soil, and minerals.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
John K. Kodros, Sarah J. Hanna, Allan K. Bertram, W. Richard Leaitch, Hannes Schulz, Andreas B. Herber, Marco Zanatta, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018, https://doi.org/10.5194/acp-18-11345-2018, 2018
Short summary
Short summary
The mixing state of black carbon is one of the key uncertainties limiting the ability of models to estimate the direct radiative effect. In this work, we present aircraft measurements from the Canadian Arctic of coating thickness as a function of black carbon core diameter and black-carbon-containing particle number fractions. We use these measurements to inform estimates of the direct radiative effect in Arctic aerosol simulations.
Gregory P. Schill, Paul J. DeMott, Ezra J. T. Levin, and Sonia M. Kreidenweis
Atmos. Meas. Tech., 11, 3007–3020, https://doi.org/10.5194/amt-11-3007-2018, https://doi.org/10.5194/amt-11-3007-2018, 2018
Short summary
Short summary
Few techniques can measure the contribution of refractory black carbon (rBC) to ice-nucleating particle (INP) concentrations. One technique uses the single particle soot photometer (SP2) as a pre-filter to an online INP counter to selectively remove rBC particles from an aerosol stream. In this work, we expand upon this technique by determining the effect of the SP2 laser on INP proxies mixed with rBC. We also bounded the SP2 conditions under which rBC is fully vaporized in the SP2 exhaust.
Qijing Bian, Badr Alharbi, Mohammed M. Shareef, Tahir Husain, Mohammad J. Pasha, Samuel A. Atwood, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 18, 3969–3985, https://doi.org/10.5194/acp-18-3969-2018, https://doi.org/10.5194/acp-18-3969-2018, 2018
Short summary
Short summary
We report long-term and spatially resolved hourly measurements of organic carbon (OC) and elemental carbon (EC) concentrations in ambient particulate matter in Riyadh, Saudi Arabia. Our analysis suggests both local vehicular emissions and regional sources (e.g., oil extraction and refining) were strong influences. Our work informs the development of pollution control strategies for Riyadh.
Haihan Chen, Anna L. Hodshire, John Ortega, James Greenberg, Peter H. McMurry, Annmarie G. Carlton, Jeffrey R. Pierce, Dave R. Hanson, and James N. Smith
Atmos. Chem. Phys., 18, 311–326, https://doi.org/10.5194/acp-18-311-2018, https://doi.org/10.5194/acp-18-311-2018, 2018
Short summary
Short summary
Much of what we know about atmospheric new particle formation (NPF) is based on ground-level measurements. We used tethered balloon measurements and remote sensing to study the location in the boundary layer in which NPF events are initiated, the degree to which the boundary layer is well-mixed during NPF, and the potential role that water may play in aerosol particle chemical evolution. This information will improve the representativeness of process level models and laboratory experiments.
Paul J. DeMott, Thomas C. J. Hill, Markus D. Petters, Allan K. Bertram, Yutaka Tobo, Ryan H. Mason, Kaitlyn J. Suski, Christina S. McCluskey, Ezra J. T. Levin, Gregory P. Schill, Yvonne Boose, Anne Marie Rauker, Anna J. Miller, Jake Zaragoza, Katherine Rocci, Nicholas E. Rothfuss, Hans P. Taylor, John D. Hader, Cedric Chou, J. Alex Huffman, Ulrich Pöschl, Anthony J. Prenni, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, https://doi.org/10.5194/acp-17-11227-2017, 2017
Short summary
Short summary
The consistency and complementarity of different methods for measuring the numbers of particles capable of forming ice in clouds are examined in the atmosphere. Four methods for collecting particles for later (offline) freezing studies are compared to a common instantaneous method. Results support very good agreement in many cases but also biases that require further research. Present capabilities and uncertainties for obtaining global data on these climate-relevant aerosols are thus defined.
Roya Ghahreman, Ann-Lise Norman, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Julia Burkart, Ofelia Rempillo, Heiko Bozem, Daniel Kunkel, Jennie L. Thomas, Amir A. Aliabadi, Gregory R. Wentworth, Maurice Levasseur, Ralf M. Staebler, Sangeeta Sharma, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 8757–8770, https://doi.org/10.5194/acp-17-8757-2017, https://doi.org/10.5194/acp-17-8757-2017, 2017
Short summary
Short summary
We present spring and summertime vertical profile measurements of Arctic dimethyl sulfide (DMS), together with model simulations to consider what these profiles indicate about DMS sources and lifetimes in the Arctic. Our results highlight the role of local open water as the source of DMS(g) during July 2014 and the influence of long-range transport of DMS(g) from further afield in the Arctic during April 2015.
Bonne Ford, Moira Burke, William Lassman, Gabriele Pfister, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 7541–7554, https://doi.org/10.5194/acp-17-7541-2017, https://doi.org/10.5194/acp-17-7541-2017, 2017
Short summary
Short summary
We explore using the percent of Facebook posters mentioning
smokeor
air qualityto assess exposure to wildfire smoke in the western US during summer 2015. We compare this de-identified, aggregated Facebook dataset to satellite observations, surface measurements, and model-simulated concentrations, and we find good agreement in smoke-impacted regions. Our results suggest that aggregate social media data can be used to supplement traditional datasets to estimate smoke exposure.
Petros Vasilakos, Yong-Ηa Kim, Jeffrey R. Pierce, Sotira Yiacoumi, Costas Tsouris, and Athanasios Nenes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-96, https://doi.org/10.5194/gmd-2017-96, 2017
Revised manuscript not accepted
Short summary
Short summary
Radioactive charging can significantly impact the way radioactive aerosols behave, and as a result their lifetime, but such effects are neglected in predictive model studies of radioactive plumes. We extend a well-established model that simulates the evolution of atmospheric particulate matter to account for radioactive charging effects in an accurate and computationally efficient way. It is shown that radioactivity can strongly impact the deposition patterns of aerosol.
Qijing Bian, Shantanu H. Jathar, John K. Kodros, Kelley C. Barsanti, Lindsay E. Hatch, Andrew A. May, Sonia M. Kreidenweis, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017, https://doi.org/10.5194/acp-17-5459-2017, 2017
Short summary
Short summary
In this paper, we perform simulations of the evolution of biomass-burning organic aerosol in laboratory smog-chamber experiments and ambient plumes. We find that in smog-chamber experiments, vapor wall losses lead to a large reduction in the apparent secondary organic aerosol formation. In ambient plumes, fire size and meteorology regulate the plume dilution rate, primary organic aerosol evaporation rate, and secondary organic aerosol formation rate.
Theodora Nah, Renee C. McVay, Jeffrey R. Pierce, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, https://doi.org/10.5194/acp-17-2297-2017, 2017
Short summary
Short summary
We present a model framework that accounts for coagulation in chamber studies where high seed aerosol surface area concentrations are used. The uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments are also assessed. We show that SOA mass yields calculated by the four methods can deviate significantly in studies where high seed aerosol surface area concentrations are used.
Andrew C. Martin, Gavin C. Cornwell, Samuel A. Atwood, Kathryn A. Moore, Nicholas E. Rothfuss, Hans Taylor, Paul J. DeMott, Sonia M. Kreidenweis, Markus D. Petters, and Kimberly A. Prather
Atmos. Chem. Phys., 17, 1491–1509, https://doi.org/10.5194/acp-17-1491-2017, https://doi.org/10.5194/acp-17-1491-2017, 2017
Short summary
Short summary
Anthropogenic influence on air quality, aerosol properties, and cloud activity was observed at Bodega Bay, CA, during periods when air from California's interior was transported to the coast. The sudden change in aerosol properties can impact atmospheric radiative balance and cloud formation in ways that must be accounted for in regional climate simulations.
Samuel A. Atwood, Jeffrey S. Reid, Sonia M. Kreidenweis, Donald R. Blake, Haflidi H. Jonsson, Nofel D. Lagrosas, Peng Xian, Elizabeth A. Reid, Walter R. Sessions, and James B. Simpas
Atmos. Chem. Phys., 17, 1105–1123, https://doi.org/10.5194/acp-17-1105-2017, https://doi.org/10.5194/acp-17-1105-2017, 2017
Short summary
Short summary
Aerosol particles were measured by ship in remote marine regions of the South China Sea as part of the 2012 7 Southeast Asian Studies (7SEAS) experiments. As the particle populations changed throughout the experiment, the distribution of particle sizes and the amount of water that collected on them changed as well. These changes were associated with various impacts from smoke, sea salt, and pollution sources, and impact how clouds form and precipitation occurs in the region.
Jeffrey S. Reid, Peng Xian, Brent N. Holben, Edward J. Hyer, Elizabeth A. Reid, Santo V. Salinas, Jianglong Zhang, James R. Campbell, Boon Ning Chew, Robert E. Holz, Arunas P. Kuciauskas, Nofel Lagrosas, Derek J. Posselt, Charles R. Sampson, Annette L. Walker, E. Judd Welton, and Chidong Zhang
Atmos. Chem. Phys., 16, 14041–14056, https://doi.org/10.5194/acp-16-14041-2016, https://doi.org/10.5194/acp-16-14041-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Jeffrey S. Reid, Nofel D. Lagrosas, Haflidi H. Jonsson, Elizabeth A. Reid, Samuel A. Atwood, Thomas J. Boyd, Virendra P. Ghate, Peng Xian, Derek J. Posselt, James B. Simpas, Sherdon N. Uy, Kimo Zaiger, Donald R. Blake, Anthony Bucholtz, James R. Campbell, Boon Ning Chew, Steven S. Cliff, Brent N. Holben, Robert E. Holz, Edward J. Hyer, Sonia M. Kreidenweis, Arunas P. Kuciauskas, Simone Lolli, Min Oo, Kevin D. Perry, Santo V. Salinas, Walter R. Sessions, Alexander Smirnov, Annette L. Walker, Qing Wang, Liya Yu, Jianglong Zhang, and Yongjing Zhao
Atmos. Chem. Phys., 16, 14057–14078, https://doi.org/10.5194/acp-16-14057-2016, https://doi.org/10.5194/acp-16-14057-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. McMurry, James N. Smith, and Jeffery R. Pierce
Atmos. Chem. Phys., 16, 9321–9348, https://doi.org/10.5194/acp-16-9321-2016, https://doi.org/10.5194/acp-16-9321-2016, 2016
Short summary
Short summary
Processes that control the growth of newly formed particles are not well understood and limit predictions of aerosol climate impacts. We combine state-of-the-art measurements at a central-US site with a particle-growth model to investigate the species and processes contributing to growth. Observed growth was dominated by organics, sulfate salts, or a mixture of these two. The model qualitatively captures the variability between different days.
Kimiko M. Sakamoto, James R. Laing, Robin G. Stevens, Daniel A. Jaffe, and Jeffrey R. Pierce
Atmos. Chem. Phys., 16, 7709–7724, https://doi.org/10.5194/acp-16-7709-2016, https://doi.org/10.5194/acp-16-7709-2016, 2016
Short summary
Short summary
We determine how various meteorological and fire factors contribute to shaping the aged biomass-burning particle size distribution through coagulation. The mass emissions flux, fire area, and wind speed are dominant factors controlling the aged size distribution. We parameterize the aged size distribution for global/regional aerosol models. We estimate that the aged biomass-burning particle size distribution may be more sensitive to variability in coagulation than SOA formation.
Tom C. J. Hill, Paul J. DeMott, Yutaka Tobo, Janine Fröhlich-Nowoisky, Bruce F. Moffett, Gary D. Franc, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 16, 7195–7211, https://doi.org/10.5194/acp-16-7195-2016, https://doi.org/10.5194/acp-16-7195-2016, 2016
Short summary
Short summary
Even though aerosols that trigger the freezing of cloud droplets are rare, they can modify cloud properties and seed precipitation. While soil organic matter is a rich source of ice nucleating particles (INPs), we know little about them. The most active INPs (freeze supercooled water > −12 °C) in Wyoming and Colorado soils were organic, sensitive to heat (105 °C), and possibly fungal proteins in several soils, but they were not known species of ice nucleating bacteria. Many may also be carbohydrates.
John K. Kodros, Rachel Cucinotta, David A. Ridley, Christine Wiedinmyer, and Jeffrey R. Pierce
Atmos. Chem. Phys., 16, 6771–6784, https://doi.org/10.5194/acp-16-6771-2016, https://doi.org/10.5194/acp-16-6771-2016, 2016
Short summary
Short summary
We provide a first estimate of the aerosol radiative effects from open, uncontrolled combustion of domestic waste. We find the direct and cloud-albedo indirect radiative effects are predominantly negative (cooling tendency) with regional forcings exceeding −0.4 W m−2; however, the magnitude of these effects depends on the assumed emitted aerosol size, mass, and optical properties.
Betty Croft, Randall V. Martin, W. Richard Leaitch, Peter Tunved, Thomas J. Breider, Stephen D. D'Andrea, and Jeffrey R. Pierce
Atmos. Chem. Phys., 16, 3665–3682, https://doi.org/10.5194/acp-16-3665-2016, https://doi.org/10.5194/acp-16-3665-2016, 2016
Short summary
Short summary
Measurements at high-Arctic sites show a strong annual cycle in atmospheric particle number and size. Previous studies identified poor scientific understanding related to global model representation of Arctic particle number and size, limiting ability to simulate this environment. Here we evaluate state-of-science ability to simulate Arctic particles using GEOS-Chem-TOMAS model, documenting key roles and interconnections of particle formation, cloud-related processes and remaining uncertainties.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
M. D. Petters, S. M. Kreidenweis, and P. J. Ziemann
Geosci. Model Dev., 9, 111–124, https://doi.org/10.5194/gmd-9-111-2016, https://doi.org/10.5194/gmd-9-111-2016, 2016
Short summary
Short summary
Organic particles suspended in air serve as nucleation seeds for droplets in atmospheric clouds. Over time their chemical composition changes towards more functionalized compounds. This work presents a model that can predict an organic compounds' ability promote the nucleation of cloud drops from its functional group composition. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote droplet nucleation. Methylene and nitrate moieties inhibit droplet nucleation.
S. D. D'Andrea, J. Y. Ng, J. K. Kodros, S. A. Atwood, M. J. Wheeler, A. M. Macdonald, W. R. Leaitch, and J. R. Pierce
Atmos. Chem. Phys., 16, 383–396, https://doi.org/10.5194/acp-16-383-2016, https://doi.org/10.5194/acp-16-383-2016, 2016
Short summary
Short summary
We evaluate aerosol size distributions predicted by GEOS-Chem-TOMAS using measurements from the peak of Whistler Mountain. We improve model-measurement comparisons of aerosol number, size, and composition during periods of free-tropospheric and boundary-layer influence by developing simple filtering techniques, and determine the influence of Asian anthropogenic and biomass burning emissions. The low-cost filtering techniques and source apportionment methods can be used for other mountain sites.
R. S. Humphries, R. Schofield, M. D. Keywood, J. Ward, J. R. Pierce, C. M. Gionfriddo, M. T. Tate, D. P. Krabbenhoft, I. E. Galbally, S. B. Molloy, A. R. Klekociuk, P. V. Johnston, K. Kreher, A. J. Thomas, A. D. Robinson, N. R. P. Harris, R. Johnson, and S. R. Wilson
Atmos. Chem. Phys., 15, 13339–13364, https://doi.org/10.5194/acp-15-13339-2015, https://doi.org/10.5194/acp-15-13339-2015, 2015
Short summary
Short summary
An atmospheric new particle formation event that was observed in the pristine East Antarctic pack ice during a springtime voyage in 2012 is characterised in terms of formation and growth rates. Known nucleation mechanisms (e.g. those involving sulfate, iodine and organics) were unable to explain observations; however, correlations with total gaseous mercury were found, leading to the suggestion of a possible mercury-driven nucleation mechanism not previously described.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
J. K. Kodros, C. E. Scott, S. C. Farina, Y. H. Lee, C. L'Orange, J. Volckens, and J. R. Pierce
Atmos. Chem. Phys., 15, 8577–8596, https://doi.org/10.5194/acp-15-8577-2015, https://doi.org/10.5194/acp-15-8577-2015, 2015
Short summary
Short summary
We examine sensitivities in aerosol concentration and climate effects from biofuel combustion emissions. We find a strong sensitivity in the overall sign and magnitude of the direct radiative effect and cloud-albedo indirect effect due to uncertainties regarding emissions size distribution, composition, mass, and optical mixing state. This uncertainty limits our ability to evaluate black carbon mitigation strategies to counter warming effects from greenhouse gases.
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015, https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Short summary
Smoke plumes from some prescribed fires in the southeastern United States were sampled via aircraft to observe changes in organic aerosol (OA) with atmospheric transport. These plumes underwent rapid mixing, and, hence, substantial dilution with background air occurred. Dilution-driven evaporation appears to be the primary driver of OA transformations within the sampled plumes rather than photochemistry.
J. R. Pierce, B. Croft, J. K. Kodros, S. D. D'Andrea, and R. V. Martin
Atmos. Chem. Phys., 15, 6147–6158, https://doi.org/10.5194/acp-15-6147-2015, https://doi.org/10.5194/acp-15-6147-2015, 2015
Short summary
Short summary
In this paper we show that coagulation of cloud droplets with interstitial aerosol particles, a process often neglected in atmospheric aerosol models, has a significant impact on aerosol size distributions and radiative forcings.
S. D. D'Andrea, J. C. Acosta Navarro, S. C. Farina, C. E. Scott, A. Rap, D. K. Farmer, D. V. Spracklen, I. Riipinen, and J. R. Pierce
Atmos. Chem. Phys., 15, 2247–2268, https://doi.org/10.5194/acp-15-2247-2015, https://doi.org/10.5194/acp-15-2247-2015, 2015
Short summary
Short summary
We use modeled estimates of BVOCs from the years 1000 to 2000 to test the effect of anthropogenic BVOC emission changes on SOA formation, aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS model. Changes of >25% in the number of particles with diameters >80nm are predicted regionally due to extensive land-use changes, leading to increases in combined radiative effect of >0.5 Wm-2. This change in radiative forcing could be an overlooked anthropogenic effect on climate.
K. M. Sakamoto, J. D. Allan, H. Coe, J. W. Taylor, T. J. Duck, and J. R. Pierce
Atmos. Chem. Phys., 15, 1633–1646, https://doi.org/10.5194/acp-15-1633-2015, https://doi.org/10.5194/acp-15-1633-2015, 2015
M. D. Gibson, J. Haelssig, J. R. Pierce, M. Parrington, J. E. Franklin, J. T. Hopper, Z. Li, and T. J. Ward
Atmos. Chem. Phys., 15, 815–827, https://doi.org/10.5194/acp-15-815-2015, https://doi.org/10.5194/acp-15-815-2015, 2015
Short summary
Short summary
This paper presents a quantitative comparison of the four most commonly used receptor models, namely absolute principal component scores, pragmatic mass closure, chemical mass balance, and positive matrix factorization. The receptor models were used to predict the contributions of boreal wild-fire smoke and other sources to PM2.5 mass in Halifax, Nova Scotia, Canada during the BORTAS-B experiment. This paper also presents a new woodsmoke PM2.5 enrichment factor (levoglucosan x 52).
M. I. Schurman, T. Lee, Y. Sun, B. A. Schichtel, S. M. Kreidenweis, and J. L. Collett Jr.
Atmos. Chem. Phys., 15, 737–752, https://doi.org/10.5194/acp-15-737-2015, https://doi.org/10.5194/acp-15-737-2015, 2015
Short summary
Short summary
Atmospheric particles can contribute to environmental degradation. An aerosol mass spectrometer was used with positive matrix factorization to explore submicron particle sources in Rocky Mountain National Park, finding that ammonium (3.9%), nitrate (4.3%), sulfate (16.6%), and two types of oxidized organic aerosol (66.9% total) are transported on upslope winds from the urban Front Range, while local campfires contribute 8.4% of mass.
P. J. DeMott, A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, https://doi.org/10.5194/acp-15-393-2015, 2015
Short summary
Short summary
Laboratory and field data are used together to develop an empirical relation between the concentrations of mineral dust particles at sizes above 0.5 microns, approximated as a single compositional type, and ice nucleating particle concentrations measured versus temperature. This should be useful in global modeling of ice cloud formation. The utility of laboratory data for parameterization development is reinforced, and the need for careful interpretation of ice nucleation data is emphasized.
R. G. Stevens and J. R. Pierce
Atmos. Chem. Phys., 14, 13661–13679, https://doi.org/10.5194/acp-14-13661-2014, https://doi.org/10.5194/acp-14-13661-2014, 2014
Short summary
Short summary
We implement a parameterization of sub-grid new-particle formation in sulfur-rich plumes (P6) for the first time into a global chemical-transport model with online aerosol microphysics. Compared with previous treatments of sub-grid particle formation, use of the P6 parameterization limits sub-grid particle formation in polluted or low-sunlight regions. We also test the sensitivity of sub-grid particle formation to changes in SO2 or NOx emissions due to emissions controls.
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014, https://doi.org/10.5194/acp-14-10535-2014, 2014
C. E. Stockwell, R. J. Yokelson, S. M. Kreidenweis, A. L. Robinson, P. J. DeMott, R. C. Sullivan, J. Reardon, K. C. Ryan, D. W. T. Griffith, and L. Stevens
Atmos. Chem. Phys., 14, 9727–9754, https://doi.org/10.5194/acp-14-9727-2014, https://doi.org/10.5194/acp-14-9727-2014, 2014
X. H. H. Huang, Q. J. Bian, P. K. K. Louie, and J. Z. Yu
Atmos. Chem. Phys., 14, 9279–9293, https://doi.org/10.5194/acp-14-9279-2014, https://doi.org/10.5194/acp-14-9279-2014, 2014
Q. Bian, X. H. H. Huang, and J. Z. Yu
Atmos. Chem. Phys., 14, 9013–9027, https://doi.org/10.5194/acp-14-9013-2014, https://doi.org/10.5194/acp-14-9013-2014, 2014
J. R. Pierce, D. M. Westervelt, S. A. Atwood, E. A. Barnes, and W. R. Leaitch
Atmos. Chem. Phys., 14, 8647–8663, https://doi.org/10.5194/acp-14-8647-2014, https://doi.org/10.5194/acp-14-8647-2014, 2014
Y. Tobo, P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis
Atmos. Chem. Phys., 14, 8521–8531, https://doi.org/10.5194/acp-14-8521-2014, https://doi.org/10.5194/acp-14-8521-2014, 2014
S. Nakao, S. R. Suda, M. Camp, M. D. Petters, and S. M. Kreidenweis
Atmos. Meas. Tech., 7, 2227–2241, https://doi.org/10.5194/amt-7-2227-2014, https://doi.org/10.5194/amt-7-2227-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
D. M. Westervelt, J. R. Pierce, and P. J. Adams
Atmos. Chem. Phys., 14, 5577–5597, https://doi.org/10.5194/acp-14-5577-2014, https://doi.org/10.5194/acp-14-5577-2014, 2014
T. D. Gordon, A. A. Presto, A. A. May, N. T. Nguyen, E. M. Lipsky, N. M. Donahue, A. Gutierrez, M. Zhang, C. Maddox, P. Rieger, S. Chattopadhyay, H. Maldonado, M. M. Maricq, and A. L. Robinson
Atmos. Chem. Phys., 14, 4661–4678, https://doi.org/10.5194/acp-14-4661-2014, https://doi.org/10.5194/acp-14-4661-2014, 2014
B. Croft, J. R. Pierce, and R. V. Martin
Atmos. Chem. Phys., 14, 4313–4325, https://doi.org/10.5194/acp-14-4313-2014, https://doi.org/10.5194/acp-14-4313-2014, 2014
E. J. T. Levin, A. J. Prenni, B. B. Palm, D. A. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. L. Jimenez, and J. N. Smith
Atmos. Chem. Phys., 14, 2657–2667, https://doi.org/10.5194/acp-14-2657-2014, https://doi.org/10.5194/acp-14-2657-2014, 2014
R. G. Stevens and J. R. Pierce
Atmos. Chem. Phys., 13, 12117–12133, https://doi.org/10.5194/acp-13-12117-2013, https://doi.org/10.5194/acp-13-12117-2013, 2013
S. D. D'Andrea, S. A. K. Häkkinen, D. M. Westervelt, C. Kuang, E. J. T. Levin, V. P. Kanawade, W. R. Leaitch, D. V. Spracklen, I. Riipinen, and J. R. Pierce
Atmos. Chem. Phys., 13, 11519–11534, https://doi.org/10.5194/acp-13-11519-2013, https://doi.org/10.5194/acp-13-11519-2013, 2013
G. S. Stuart, R. G. Stevens, A.-I. Partanen, A. K. L. Jenkins, H. Korhonen, P. M. Forster, D. V. Spracklen, and J. R. Pierce
Atmos. Chem. Phys., 13, 10385–10396, https://doi.org/10.5194/acp-13-10385-2013, https://doi.org/10.5194/acp-13-10385-2013, 2013
L. A. Lee, K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw
Atmos. Chem. Phys., 13, 8879–8914, https://doi.org/10.5194/acp-13-8879-2013, https://doi.org/10.5194/acp-13-8879-2013, 2013
Y. H. Lee, J. R. Pierce, and P. J. Adams
Geosci. Model Dev., 6, 1221–1232, https://doi.org/10.5194/gmd-6-1221-2013, https://doi.org/10.5194/gmd-6-1221-2013, 2013
S. A. K. Häkkinen, H. E. Manninen, T. Yli-Juuti, J. Merikanto, M. K. Kajos, T. Nieminen, S. D. D'Andrea, A. Asmi, J. R. Pierce, M. Kulmala, and I. Riipinen
Atmos. Chem. Phys., 13, 7665–7682, https://doi.org/10.5194/acp-13-7665-2013, https://doi.org/10.5194/acp-13-7665-2013, 2013
D. M. Westervelt, J. R. Pierce, I. Riipinen, W. Trivitayanurak, A. Hamed, M. Kulmala, A. Laaksonen, S. Decesari, and P. J. Adams
Atmos. Chem. Phys., 13, 7645–7663, https://doi.org/10.5194/acp-13-7645-2013, https://doi.org/10.5194/acp-13-7645-2013, 2013
M. D. Gibson, J. R. Pierce, D. Waugh, J. S. Kuchta, L. Chisholm, T. J. Duck, J. T. Hopper, S. Beauchamp, G. H. King, J. E. Franklin, W. R. Leaitch, A. J. Wheeler, Z. Li, G. A. Gagnon, and P. I. Palmer
Atmos. Chem. Phys., 13, 7199–7213, https://doi.org/10.5194/acp-13-7199-2013, https://doi.org/10.5194/acp-13-7199-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
J. A. Huffman, A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, D. J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D. A. Day, M. O. Andreae, J. L. Jimenez, M. Gallagher, S. M. Kreidenweis, A. K. Bertram, and U. Pöschl
Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, https://doi.org/10.5194/acp-13-6151-2013, 2013
J. R. Pierce, M. J. Evans, C. E. Scott, S. D. D'Andrea, D. K. Farmer, E. Swietlicki, and D. V. Spracklen
Atmos. Chem. Phys., 13, 3163–3176, https://doi.org/10.5194/acp-13-3163-2013, https://doi.org/10.5194/acp-13-3163-2013, 2013
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, https://doi.org/10.5194/acp-13-1141-2013, 2013
M. D. Petters and S. M. Kreidenweis
Atmos. Chem. Phys., 13, 1081–1091, https://doi.org/10.5194/acp-13-1081-2013, https://doi.org/10.5194/acp-13-1081-2013, 2013
C. R. Lonsdale, R. G. Stevens, C. A. Brock, P. A. Makar, E. M. Knipping, and J. R. Pierce
Atmos. Chem. Phys., 12, 11519–11531, https://doi.org/10.5194/acp-12-11519-2012, https://doi.org/10.5194/acp-12-11519-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate
Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation–emission matrix spectroscopy with parallel factor analysis – potential limitations and applications
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Magnetic fraction of the atmospheric dust in Kraków – physicochemical characteristics and possible environmental impact
Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons
SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds
Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions
Chemical characterization of organic compounds involved in iodine-initiated new particle formation from coastal macroalgal emission
A Combined Gas- and Particle-phase Analysis of Highly Oxygenated Organic Molecules (HOM) from α-pinene Ozonolysis
The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity
Winter brown carbon over six of China's megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network
Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
Comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry
Measurement report: Investigation of pH- and particle-size-dependent chemical and optical properties of water-soluble organic carbon: implications for its sources and aging processes
The influence of the addition of isoprene on the volatility of particles formed from the photo-oxidation of anthropogenic–biogenic mixtures
Significant formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface
Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark
Chemical characteristics and sources of PM2.5 in Hohhot, a semi-arid city in northern China: insight from the COVID-19 lockdown
Yields and molecular composition of gas phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitroaromatic compounds
The positive effect of formaldehyde on the photocatalytic renoxification of nitrate on TiO2 particles
Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO3 and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols
Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere
Effects of OH radical and SO2 concentrations on photochemical reactions of mixed anthropogenic organic gases
Effects of the sample matrix on the photobleaching and photodegradation of toluene-derived secondary organic aerosol compounds
Functionality-based formation of secondary organic aerosol from m-xylene photooxidation
Chemical composition of secondary organic aerosol particles formed from mixtures of anthropogenic and biogenic precursors
A novel pathway of atmospheric sulfate formation through carbonate radicals
A sulfuric acid nucleation potential model for the atmosphere
Optical and chemical properties and oxidative potential of aqueous-phase products from OH and 3C∗-initiated photooxidation of eugenol
The relationship between PM2.5 and anticyclonic wave activity during summer over the United States
Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions
Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland
Kinetics, SOA yields, and chemical composition of secondary organic aerosol from β-caryophyllene ozonolysis with and without nitrogen oxides between 213 and 313 K
Chemical transformation of α-pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates
Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism, and light absorption
Secondary organic aerosol formation from camphene oxidation: measurements and modeling
Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy
Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles
Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?
Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO3) oxidation of alpha-pinene from various RO2 fates
Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations
Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate
Evolution of volatility and composition in sesquiterpene-mixed and α-pinene secondary organic aerosol particles during isothermal evaporation
Potential new tracers and their mass fraction in the emitted PM10 from the burning of household waste in stoves
Synergetic effects of NH3 and NOx on the production and optical absorption of secondary organic aerosol formation from toluene photooxidation
Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
Technical note: Adsorption and desorption equilibria from statistical thermodynamics and rates from transition state theory
Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study
Beatrix Rosette Go Mabato, Yong Jie Li, Dan Dan Huang, Yalin Wang, and Chak K. Chan
Atmos. Chem. Phys., 23, 2859–2875, https://doi.org/10.5194/acp-23-2859-2023, https://doi.org/10.5194/acp-23-2859-2023, 2023
Short summary
Short summary
We compared non-phenolic and phenolic methoxybenzaldehydes as photosensitizers for aqueous secondary organic aerosol (aqSOA) formation under cloud and fog conditions. We showed that the structural features of photosensitizers affect aqSOA formation. We also elucidated potential interactions between photosensitization and ammonium nitrate photolysis. Our findings are useful for evaluating the importance of photosensitized reactions on aqSOA formation, which could improve aqSOA predictive models.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023, https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Short summary
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in particle morphology were observed. On the contrary, the coexistence of surface insoluble fatty acid film and soluble saccharides significantly inhibited the production of SSA. This is the first demonstration that hydrogen bonding mediated by surface-insoluble fatty acids contributes to saccharide transfer in seawater, providing a new mechanism for saccharide enrichment in SSA.
Jan M. Michalik, Wanda Wilczyńska-Michalik, Łukasz Gondek, Waldemar Tokarz, Jan Żukrowski, Marta Gajewska, and Marek Michalik
Atmos. Chem. Phys., 23, 1449–1464, https://doi.org/10.5194/acp-23-1449-2023, https://doi.org/10.5194/acp-23-1449-2023, 2023
Short summary
Short summary
The magnetic fraction of the aerosols in Kraków was collected and analysed using scanning and transmission electron microscopy with energy-dispersive spectrometry, X-ray diffraction, Mössbauer spectrometry, and magnetometry. It contains metallic Fe or Fe-rich alloy and Fe oxides. The occurrence of nanometre-scale Fe3O4 particles (predominantly of anthropogenic origin) is shown. Our results can help to determine the sources and transport of pollutants, potential harmful effects, etc.
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023, https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
Short summary
The diurnal pattern in biogenic secondary organic aerosol (SOA) formation is simulated by using the UNIPAR model, which predicts SOA growth via multiphase reactions of hydrocarbons under varying NOx levels, aerosol acidity, humidity, and temperature. The simulation suggests that nighttime SOA formation, even in urban environments, where anthropogenic emission is high, is dominated by products from ozonolysis and NO3-initiated oxidation of biogenic hydrocarbons.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Zijun Li, Angela Buchholz, Luis M. F. Barreira, Arttu Ylisirniö, Liqing Hao, Iida Pullinen, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 23, 203–220, https://doi.org/10.5194/acp-23-203-2023, https://doi.org/10.5194/acp-23-203-2023, 2023
Short summary
Short summary
Interaction between NOx and biogenic emissions can be important in suburban areas. Our study showed that the addition of NOx during α-pinene SOA formation produced considerable amounts of organic nitrates and affected the composition of non-nitrated organic compounds. The compositional difference consequently altered the primary type of aqueous-phase processes during the isothermal particle evaporation.
Yibei Wan, Xiangpeng Huang, Chong Xing, Qiongqiong Wang, Xinlei Ge, and Huan Yu
Atmos. Chem. Phys., 22, 15413–15423, https://doi.org/10.5194/acp-22-15413-2022, https://doi.org/10.5194/acp-22-15413-2022, 2022
Short summary
Short summary
The organic compounds involved in continental new particle formation have been investigated in depth in the last 2 decades. In contrast, no prior work has studied the exact chemical composition of organic compounds and their role in coastal new particle formation. We present a complementary study to the ongoing laboratory and field research on iodine nucleation in the coastal atmosphere. This study provided a more complete story of coastal I-NPF from low-tide macroalgal emission.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
EGUsphere, https://doi.org/10.5194/egusphere-2022-1317, https://doi.org/10.5194/egusphere-2022-1317, 2022
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOM) from α-pinene ozonolysis, enhancement of C16-C19 HOM dimers in particles was observed. Especially, C17H26Oz, which has often been reported by offline measurements, dominates the particle-phase HOM. Our results indicate that these C17 compounds might be closely related to particle-phase HOM formation. These results are important for a better understanding of SOA formation in the atmosphere.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022, https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary
Short summary
Mixing experiments are crucial and highly beneficial for our understanding of atmospheric chemical interactions. However, interpretation quickly becomes complex, and both the experimental design and evaluation need to be scrutinised carefully. Advanced online and offline compositional measurements can reveal substantial additional information to aid in the interpretation of yield data, including components uniquely found in mixtures and property changes in SOA formed from mixtures of VOCs.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Xiao He, Xuan Zheng, Shaojun Zhang, Xuan Wang, Ting Chen, Xiao Zhang, Guanghan Huang, Yihuan Cao, Liqiang He, Xubing Cao, Yuan Cheng, Shuxiao Wang, and Ye Wu
Atmos. Chem. Phys., 22, 13935–13947, https://doi.org/10.5194/acp-22-13935-2022, https://doi.org/10.5194/acp-22-13935-2022, 2022
Short summary
Short summary
With the use of two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC ToF-MS), we successfully give a comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emitted from heavy-duty diesel vehicles. I/SVOCs are speciated, identified, and quantified based on the patterns of the mass spectrum, and the gas–particle partitioning is fully addressed.
Yuanyuan Qin, Juanjuan Qin, Xiaobo Wang, Kang Xiao, Ting Qi, Yuwei Gao, Xueming Zhou, Shaoxuan Shi, Jingnan Li, Jingsi Gao, Ziyin Zhang, Jihua Tan, Yang Zhang, and Rongzhi Chen
Atmos. Chem. Phys., 22, 13845–13859, https://doi.org/10.5194/acp-22-13845-2022, https://doi.org/10.5194/acp-22-13845-2022, 2022
Short summary
Short summary
Deep interrogation of water-soluble organic carbon (WSOC) in aerosols is critical and challenging considering its involvement in many key aerosol-associated chemical reactions. This work examined how the chemical structures (functional groups) and optical properties (UV/fluorescence properties) of WSOC were affected by pH and particle size. We found that the pH- and particle-size-dependent behaviors could be used to reveal the structures, sources, and aging of aerosol WSOC.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, Thomas J. Bannan, Michael Flynn, Spyros N. Pandis, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 13677–13693, https://doi.org/10.5194/acp-22-13677-2022, https://doi.org/10.5194/acp-22-13677-2022, 2022
Short summary
Short summary
The addition of a low-yield precursor to the reactive mixture of aVOC and bVOC can increase or decrease the SOA volatility that is system-dependent. Therefore, the SOA volatility of the mixtures cannot always be predicted based on the additivity. In complex mixtures the formation of lower-volatility products likely outweighs the formation of products with higher volatility. The unique products of each mixture contribute significantly to the signal, suggesting interactions can be important.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
David M. Bell, Cheng Wu, Amelie Bertrand, Emelie Graham, Janne Schoonbaert, Stamatios Giannoukos, Urs Baltensperger, Andre S. H. Prevot, Ilona Riipinen, Imad El Haddad, and Claudia Mohr
Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, https://doi.org/10.5194/acp-22-13167-2022, 2022
Short summary
Short summary
A series of studies designed to investigate the evolution of organic aerosol were performed in an atmospheric simulation chamber, using a common oxidant found at night (NO3). The chemical composition steadily changed from its initial composition via different chemical reactions that were taking place inside of the aerosol particle. These results show that the composition of organic aerosol steadily changes during its lifetime in the atmosphere.
Haijun Zhou, Tao Liu, Bing Sun, Yongli Tian, Xingjun Zhou, Feng Hao, Xi Chun, Zhiqiang Wan, Peng Liu, Jingwen Wang, and Dagula Du
Atmos. Chem. Phys., 22, 12153–12166, https://doi.org/10.5194/acp-22-12153-2022, https://doi.org/10.5194/acp-22-12153-2022, 2022
Short summary
Short summary
A single year’s offline measurement was conducted in Hohhot to reveal the chemical characteristics and sources of PM2.5 in a semi-arid region. We believe that our study makes a significant contribution to the literature because relatively few studies have focused on the chemical composition and sources of PM2.5 with offline measurements. A knowledge gap exists concerning how chemical composition and sources respond to implemented control measures for aerosols, particularly in a semi-arid region.
Mohammed Jaoui, Kenneth S. Docherty, Michael Lewandowski, and Tadeusz Kleindienst
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-651, https://doi.org/10.5194/acp-2022-651, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
VCPs are a class of chemicals widely used in industrial and consumer products (e.g., coatings, adhesives, inks, personal care products) and are an important component of total VOC in urban atmospheres. This study provides SOA yields and detailed chemical analysis of the gas and aerosol phase products of the photooxidation of one of these VCPs, benzyl alcohol. These results will allow better links between characterized sources and their resulting criteria pollutant formation.
Yuhan Liu, Xuejiao Wang, Jing Shang, Weiwei Xu, Mengshuang Sheng, and Chunxiang Ye
Atmos. Chem. Phys., 22, 11347–11358, https://doi.org/10.5194/acp-22-11347-2022, https://doi.org/10.5194/acp-22-11347-2022, 2022
Short summary
Short summary
In this study, the influence of HCHO on renoxification on nitrate-doped TiO2 particles is investigated by using an experimental chamber. Mass NOx release is suggested to follow the NO−3-NO3·-HNO3-NOx pathway, with HCHO involved in the transformation of NO3· to HNO3 through hydrogen abstraction. Our proposed reaction mechanism by which HCHO promotes photocatalytic renoxification is helpful for deeply understanding the atmospheric photochemical processes and nitrogen cycling.
Yindong Guo, Hongru Shen, Iida Pullinen, Hao Luo, Sungah Kang, Luc Vereecken, Hendrik Fuchs, Mattias Hallquist, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, Defeng Zhao, and Thomas F. Mentel
Atmos. Chem. Phys., 22, 11323–11346, https://doi.org/10.5194/acp-22-11323-2022, https://doi.org/10.5194/acp-22-11323-2022, 2022
Short summary
Short summary
The oxidation of limonene, a common volatile emitted by trees and chemical products, by NO3, a nighttime oxidant, forms many highly oxygenated organic molecules (HOM), including C10-30 compounds. Most of the HOM are second-generation organic nitrates, in which carbonyl-substituted C10 nitrates accounted for a major fraction. Their formation can be explained by chemistry of peroxy radicals. HOM, especially low-volatile ones, play an important role in nighttime new particle formation and growth.
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022, https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Short summary
The nitrate phase state can play a critical role in determining the occurrence and extent of nitrate depletion in internally mixed NaNO3–DCA particles, which may be instructive for relevant aerosol reaction systems. Besides, organic acids have a potential to deplete nitrate based on the comprehensive consideration of acidity, particle-phase state, droplet water activity, and HNO3 gas-phase diffusion.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022, https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary
Short summary
Ozone formation is enhanced by higher OH concentration and higher temperature but is influenced little by SO2. SO2 can largely enhance the particle formation. Organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. The results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere.
Alexandra L. Klodt, Marley Adamek, Monica Dibley, Sergey A. Nizkorodov, and Rachel E. O'Brien
Atmos. Chem. Phys., 22, 10155–10171, https://doi.org/10.5194/acp-22-10155-2022, https://doi.org/10.5194/acp-22-10155-2022, 2022
Short summary
Short summary
We investigated photochemistry of a secondary organic aerosol under three different conditions: in a dilute aqueous solution mimicking cloud droplets, in a solution of concentrated ammonium sulfate mimicking deliquesced aerosol, and in an organic matrix mimicking dry organic aerosol. We find that rate and mechanisms of photochemistry depend sensitively on these conditions, suggesting that the same organic aerosol compounds will degrade at different rates depending on their local environment.
Yixin Li, Jiayun Zhao, Mario Gomez-Hernandez, Michael Lavallee, Natalie M. Johnson, and Renyi Zhang
Atmos. Chem. Phys., 22, 9843–9857, https://doi.org/10.5194/acp-22-9843-2022, https://doi.org/10.5194/acp-22-9843-2022, 2022
Short summary
Short summary
Here we elucidate the production of COOs and their roles in SOA and brown carbon formation from m-xylene oxidation by simultaneously monitoring the evolution of gas-phase products and aerosol properties in an environmental chamber. A kinetic framework is developed to predict SOA production from the concentrations and uptake coefficients for COOs. This functionality-based approach reproduces SOA formation from m-xylene oxidation well and is applicable to VOC oxidation for other species.
Yunqi Shao, Aristeidis Voliotis, Mao Du, Yu Wang, Kelly Pereira, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 9799–9826, https://doi.org/10.5194/acp-22-9799-2022, https://doi.org/10.5194/acp-22-9799-2022, 2022
Short summary
Short summary
This study explored the chemical properties of secondary organic aerosol (SOA) that formed from photo-oxidation of single and mixed biogenic and anthropogenic precursors. We showed that SOA chemical properties in a mixed vapour system are mainly affected by the
higher-yield precursor's oxidation products and products from
cross-product formation. This study also identifies potential tracer compounds in a mixed vapour system that might be used in SOA source attribution in future ambient studies.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Jack S. Johnson and Coty N. Jen
Atmos. Chem. Phys., 22, 8287–8297, https://doi.org/10.5194/acp-22-8287-2022, https://doi.org/10.5194/acp-22-8287-2022, 2022
Short summary
Short summary
Sulfuric acid nucleation forms particles in Earth's atmosphere that influence cloud formation and climate. This study introduces the Nucleation Potential Model, which simplifies the diverse reactions between sulfuric acid and numerous precursor gases to predict nucleation rates. Results show that the model is capable of estimating the potency and concentration of mixtures of precursor gases from laboratory and field observations and can be used to model nucleation across diverse environments.
Xudong Li, Ye Tao, Longwei Zhu, Shuaishuai Ma, Shipeng Luo, Zhuzi Zhao, Ning Sun, Xinlei Ge, and Zhaolian Ye
Atmos. Chem. Phys., 22, 7793–7814, https://doi.org/10.5194/acp-22-7793-2022, https://doi.org/10.5194/acp-22-7793-2022, 2022
Short summary
Short summary
This work has, for the first time, investigated the optical and chemical properties and oxidative potential of aqueous-phase photooxidation products of eugenol (a biomass-burning-emitted compound) and elucidated the interplay among these properties. Large mass yields exceeding 100 % were found, and the aqueous processing is a source of BrC (likely relevant with humic-like substances). We also show that aqueous processing can produce species that are more toxic than that of its precursor.
Ye Wang, Natalie Mahowald, Peter Hess, Wenxiu Sun, and Gang Chen
Atmos. Chem. Phys., 22, 7575–7592, https://doi.org/10.5194/acp-22-7575-2022, https://doi.org/10.5194/acp-22-7575-2022, 2022
Short summary
Short summary
PM2.5 is positively related to anticyclonic wave activity (AWA) changes close to the observing sites. Changes between current and future climates in AWA can explain up to 75 % of PM2.5 variability at some stations using a linear regression model. Our analysis indicates that higher PM2.5 concentrations occur when a positive AWA anomaly is prominent, which could be critical for understanding how pollutants respond to changing atmospheric circulation and for developing robust pollution projections.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Adam Brighty, Véronique Jacob, Gaëlle Uzu, Lucille Borlaza, Sébastien Conil, Christoph Hueglin, Stuart K. Grange, Olivier Favez, Cécile Trébuchon, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 6021–6043, https://doi.org/10.5194/acp-22-6021-2022, https://doi.org/10.5194/acp-22-6021-2022, 2022
Short summary
Short summary
With an revised analytical method and long-term sampling strategy, we have been able to elucidate much more information about atmospheric plant debris, a poorly understood class of particulate matter. We found weaker seasonal patterns at urban locations compared to rural locations and significant interannual variability in concentrations between previous years and 2020, during the COVID-19 pandemic. This suggests a possible man-made influence on plant debris concentration and source strength.
Linyu Gao, Junwei Song, Claudia Mohr, Wei Huang, Magdalena Vallon, Feng Jiang, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 22, 6001–6020, https://doi.org/10.5194/acp-22-6001-2022, https://doi.org/10.5194/acp-22-6001-2022, 2022
Short summary
Short summary
We study secondary organic aerosol (SOA) from β-caryophyllene (BCP) ozonolysis with and without nitrogen oxides over 213–313 K in the simulation chamber. The yields and the rate constants were determined at 243–313 K. Chemical compositions varied at different temperatures, indicating a strong impact on the BCP ozonolysis pathways. This work helps to better understand the SOA from BCP ozonolysis for conditions representative of the real atmosphere from the boundary layer to the upper troposphere.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Bartłomiej Witkowski, Priyanka Jain, and Tomasz Gierczak
Atmos. Chem. Phys., 22, 5651–5663, https://doi.org/10.5194/acp-22-5651-2022, https://doi.org/10.5194/acp-22-5651-2022, 2022
Short summary
Short summary
This article describes a comprehensive investigation of the aqueous oxidation of 4-nitrophenol (4NP) by hydroxyl radicals (OH). The reaction was carried out in a laboratory photoreactor. We report the formation of key intermediates under different pH conditions and the evolution of the light absorption of the reaction solution. The results provide new insights into the formation and removal (chemical bleaching) of light-absorbing organic aerosols (atmospheric brown carbon).
Qi Li, Jia Jiang, Isaac K. Afreh, Kelley C. Barsanti, and David R. Cocker III
Atmos. Chem. Phys., 22, 3131–3147, https://doi.org/10.5194/acp-22-3131-2022, https://doi.org/10.5194/acp-22-3131-2022, 2022
Short summary
Short summary
Chamber-derived secondary organic aerosol (SOA) yields from camphene are reported for the first time. The role of peroxy radicals (RO2) was investigated using chemically detailed box models. We observed higher SOA yields (up to 64 %) in the experiments with added NOx than without due to the formation of highly oxygenated organic molecules (HOMs) when
NOx is present. This work can improve the representation of camphene in air quality models and provide insights into other monoterpene studies.
Xiuli Wei, Haosheng Dai, Huaqiao Gui, Jiaoshi Zhang, Yin Cheng, Jie Wang, Yixin Yang, Youwen Sun, and Jianguo Liu
Atmos. Chem. Phys., 22, 3097–3109, https://doi.org/10.5194/acp-22-3097-2022, https://doi.org/10.5194/acp-22-3097-2022, 2022
Short summary
Short summary
We demonstrated the usage of the Fourier transform infrared (FTIR) spectroscopic technique to characterize in real time the hygroscopic growth properties of nanoparticles and their phase transition micro-dynamics at the molecular level. We first realize real-time measurements of water content and dry nanoparticle mass to characterize hygroscopic growth factors. We then identify in real time the hydration interactions and the dynamic hygroscopic growth process of the functional groups.
Zhancong Liang, Yangxi Chu, Masao Gen, and Chak K. Chan
Atmos. Chem. Phys., 22, 3017–3044, https://doi.org/10.5194/acp-22-3017-2022, https://doi.org/10.5194/acp-22-3017-2022, 2022
Short summary
Short summary
The properties and fate of individual airborne particles can be significantly different, leading to distinct environmental impacts (e.g., climate and human health). While many instruments only analyze an ensemble of these particles, single-particle Raman spectroscopy enables unambiguous characterization of individual particles. This paper comprehensively reviews the applications of such a technique in studying atmospheric particles, especially for their physicochemical processing.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Kelvin H. Bates, Guy J. P. Burke, James D. Cope, and Tran B. Nguyen
Atmos. Chem. Phys., 22, 1467–1482, https://doi.org/10.5194/acp-22-1467-2022, https://doi.org/10.5194/acp-22-1467-2022, 2022
Short summary
Short summary
The main nighttime sink of α-pinene, a hydrocarbon abundantly emitted by plants, is reaction with NO3 to form nitrooxy peroxy radicals (nRO2). Using uniquely designed chamber experiments, we show that this reaction is a major source of organic aerosol when nRO2 reacts with other nRO2 and forms a nitrooxy hydroperoxide when nRO2 reacts with HO2. Under ambient conditions these pathways are key loss processes of atmospheric reactive nitrogen in areas with mixed biogenic and anthropogenic influence.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Beatrix Rosette Go Mabato, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary
Short summary
Biomass burning (BB) is a global phenomenon that releases large quantities of pollutants such as phenols and aromatic carbonyls into the atmosphere. These compounds can form secondary organic aerosols (SOAs) which play an important role in the Earth’s energy budget. In this work, we demonstrated that the direct irradiation of vanillin (VL) could generate aqueous SOA (aqSOA) such as oligomers. In the presence of nitrate, VL photo-oxidation can also form nitrated compounds.
Zijun Li, Angela Buchholz, Arttu Ylisirniö, Luis Barreira, Liqing Hao, Siegfried Schobesberger, Taina Yli-Juuti, and Annele Virtanen
Atmos. Chem. Phys., 21, 18283–18302, https://doi.org/10.5194/acp-21-18283-2021, https://doi.org/10.5194/acp-21-18283-2021, 2021
Short summary
Short summary
We compared the evolution of two types of secondary organic aerosol (SOA) particles during isothermal evaporation. The sesquiterpene SOA particles demonstrated higher resilience to evaporation than α-pinene SOA particles generated under comparable conditions. In-depth analysis showed that under high-relative-humidity conditions, particulate water drove the evolution of particulate constituents by reducing the particle viscosity and initiating chemical aqueous-phase processes.
András Hoffer, Ádám Tóth, Beatrix Jancsek-Turóczi, Attila Machon, Aida Meiramova, Attila Nagy, Luminita Marmureanu, and András Gelencsér
Atmos. Chem. Phys., 21, 17855–17864, https://doi.org/10.5194/acp-21-17855-2021, https://doi.org/10.5194/acp-21-17855-2021, 2021
Short summary
Short summary
Due to the widespread use of plastics high amounts of waste are burned in households worldwide, emitting vast amounts of PM10 and PAHs into the atmosphere. In this work different types of common plastics were burned in the laboratory with a view to identifying potentially specific tracer compounds and determining their emission factors. The compounds found were also successfully identified in atmospheric PM10 samples, indicating their potential use as ambient tracers for illegal waste burning.
Shijie Liu, Dandan Huang, Yiqian Wang, Si Zhang, Xiaodi Liu, Can Wu, Wei Du, and Gehui Wang
Atmos. Chem. Phys., 21, 17759–17773, https://doi.org/10.5194/acp-21-17759-2021, https://doi.org/10.5194/acp-21-17759-2021, 2021
Short summary
Short summary
A series of chamber experiments was performed to probe the individual and common effects of NH3 and NOx on toluene secondary organic aerosol (SOA) formation through OH photooxidation. The synergetic effects of NH3 and NOx on the toluene SOA concentration and optical absorption were observed. The higher-volatility products formed in the presence of NOx could precipitate into the particle phase when NH3 was added. The formation pathways of N-containing OAs through NOx or NH3 are also discussed.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Daniel A. Knopf and Markus Ammann
Atmos. Chem. Phys., 21, 15725–15753, https://doi.org/10.5194/acp-21-15725-2021, https://doi.org/10.5194/acp-21-15725-2021, 2021
Short summary
Short summary
Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of gas-to-condensed-phase processes that can define the physicochemical evolution of the condensed phase. We apply a thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and surface accommodation depend on the choice of adsorption model and standard states with implications for desorption energy and lifetimes.
Spiro D. Jorga, Kalliopi Florou, Christos Kaltsonoudis, John K. Kodros, Christina Vasilakopoulou, Manuela Cirtog, Axel Fouqueau, Bénédicte Picquet-Varrault, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, https://doi.org/10.5194/acp-21-15337-2021, 2021
Short summary
Short summary
We test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through the oxidation of the emitted organic vapors by the nitrate radicals produced during the reaction of ozone and nitrogen oxides. Our experiments, using as a starting point the ambient air of an urban area with high biomass burning activity, demonstrate that, even with sunlight, there is 20 %–70 % additional organic aerosol formed in a few hours.
Cited articles
Abramowitz, M. and Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Courier Corporation, Dover, New York, 1964.
Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002.
Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res. Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Capes, G., Murphy, J. G., Reeves, C. E., McQuaid, J. B., Hamilton, J. F., Hopkins, J. R., Crosier, J., Williams, P. I., and Coe, H.: Secondary organic aerosol from biogenic VOCs over West Africa during AMMA, Atmos. Chem. Phys., 9, 3841–3850, https://doi.org/10.5194/acp-9-3841-2009, 2009.
Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained estimates of carbonaceous aerosol radiative forcing, P. Natl. Acad. Sci. USA, 109, 11624–11629, https://doi.org/10.1073/pnas.1203707109, 2012.
Crump, J. G. and Seinfeld, J. H.: Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape, J. Aerosol Sci., 12, 405–415, 1981.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory, Aerosol Sci. Tech., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004.
DeCarlo, P. F., Ulbrich, I. M., Crounse, J., de Foy, B., Dunlea, E. J., Aiken, A. C., Knapp, D., Weinheimer, A. J., Campos, T., Wennberg, P. O., and Jimenez, J. L.: Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO, Atmos. Chem. Phys., 10, 5257–5280, https://doi.org/10.5194/acp-10-5257-2010, 2010.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c, 2006.
Giordano, M., Espinoza, C., and Asa-Awuku, A.: Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability, Atmos. Chem. Phys., 15, 1807–1821, https://doi.org/10.5194/acp-15-1807-2015, 2015.
Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?, Geophys. Res. Lett., 34, L14810, https://doi.org/10.1029/2007GL029987, 2007.
Grieshop, A. P., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements, Environ. Sci. Technol., 43, 4750–4756, https://doi.org/10.1021/es8032378, 2009.
Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett Jr., J. L., Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys., 11, 7669–7686, https://doi.org/10.5194/acp-11-7669-2011, 2011.
Hennigan, C. J., Westervelt, D. M., Riipinen, I., Engelhart, G. J., Lee, T., Collett, J. L., Pandis, S. N., Adams, P. J., and Robinson, A. L.: New particle formation and growth in biomass burning plumes: an important source of cloud condensation nuclei, Geophys. Res. Lett., 39, L09805, https://doi.org/10.1029/2012GL050930, 2012.
Huffman, J. A., Docherty, K. S., Mohr, C., Cubison, M. J., Ulbrich, I. M., Ziemann, P. J., Onasch, T. B., and Jimenez, J. L.: Chemically-resolved volatility measurements of organic aerosol from different sources, Environ. Sci. Technol., 43, 5351–5357, https://doi.org/10.1021/es803539d, 2009.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects, J. Gephys. Res.-Atmos., 119, 8980–9002, https://doi.org/10.1002/2014JD021861, 2014.
Jassen, N. A. H., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., Fischer, P., Brunekreef, B., and Krzyzonowsk, M.: Health Effects of Black Carbon, World Health Organization, Regional Office for Europe, available at: http://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf (last access: June 2015), 2010.
Jathar, S. H., Gordon, T. D., Hennigan, C. J., Pye, H. O. T., Pouliot, G., Adams, P. J., Donahue, N. M., and Robinson, A. L.: Unspeciated organic emissions from combusition sources and their influence on the secondary organic aerosol budget in the United States, P. Natl. Acad. Sci. USA, 111, 10473–10478, https://doi.org/10.1073/pnas.1323740111, 2014.
Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M. J. S., and Brauer, M.: Estimated global mortality attributable to smoke from landscape fires, Environ. Health Persp., 120, 695–701, 2012.
Lee, B., Pierce, J. R., Engelhart, G. J., and Pandis, S. N.: Volatility of secondary organic aerosol from the ozonolysis of monoterpenes, Atmos. Environ., 45, 2443–2452, 2011.
Lipsky, E. M. and Robinson, A. L.: Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke, Environ. Sci. Technol., 40, 155–162, https://doi.org/10.1021/es050319p, 2006.
Loza, C. L., Chan, A. W. H., Galloway, M., Keutsch, F. N., Flagan, R. C., and Seinfeld, J. H.: Characterization of vapor wall loss in laboratory chambers, Environ. Sci. Technol., 44, 5074–5078, https://doi.org/10.1021/es100727v, 2010.
Matsunaga, A. and Ziemann, P. J.: Gas-wall partitioning of organic compounds in a teflon film chamber and potential effects on reaction product and aerosol yield measurements, Aerosol Sci. Tech., 44, 881–892, https://doi.org/10.1080/02786826.2010.501044, 2010.
May, A. A., Presto, A. A., Hennigan, C. J., Nguyen, N. T., Gordon, T. D., and Robinson, A. L.: Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust, Atmos. Environ., 77, 128–139, https://doi.org/10.1016/j.atmosenv.2013.04.060, 2013a.
May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T., Collett, J. L., Jimenez, J. L., Kreidenweis, S. M., and Robinson, A. L.: Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning, J. Geophys. Res.-Atmos., 118, 11327–11338, https://doi.org/10.1002/jgrd.50828, 2013b.
May, A. A., McMeeking, G. R., Lee, T., Taylor, J. W., Craven, J. S., Burling, I., Sullivan, A. P., Akagi, S., Collett Jr., J. L., Flynn, M., Coe, H., Urbanski, S. P., Seinfeld, J. H., Yokelson, R. J., and Kreidenweis, S. M.: Aerosol emissions from prescribed fires in the United States: a synthesis of laboratory and aircraft measurements, J. Geophys. Res.-Atmos., 119, 11826–11849, https://doi.org/10.1002/2014JD021848, 2014.
May, A. A., Lee, T., McMeeking, G. R., Akagi, S., Sullivan, A. P., Urbanski, S., Yokelson, R. J., and Kreidenweis, S. M.: Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes, Atmos. Chem. Phys. Discuss., 15, 1953–1988, https://doi.org/10.5194/acpd-15-1953-2015, 2015.
McMurry, P. H. and Grosjean, D.: Gas and aerosol wall losses in Teflon film smog chambers, Environ. Sci. Technol., 19, 1176–1182, https://doi.org/10.1021/es00142a006, 1985.
McMurry, P. H. and Rader, D. J.: Aerosol wall losses in electrically charged chambers, Aerosol Sci. Tech., 4, 249–268, https://doi.org/10.1080/02786828508959054, 1985.
McVay, R. C., Cappa, C. D., and Seinfeld, J. H.: Vapo–wall deposition in chambers: theoretical considerations, Environ. Sci. Technol., 48, 10251–10258, https://doi.org/10.1021/es502170j, 2014.
Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., and Smith, K. R.: Woodsmoke health effects: a review, Inhal. Toxicol., 19, 67–106, 2007.
Nakao, S., Clark, C., Tang, P., Sato, K., and Cocker III, D.: Secondary organic aerosol formation from phenolic compounds in the absence of NOx, Atmos. Chem. Phys., 11, 10649–10660, https://doi.org/10.5194/acp-11-10649-2011, 2011.
Ortega, A. M., Day, D. A., Cubison, M. J., Brune, W. H., Bon, D., de Gouw, J. A., and Jimenez, J. L.: Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3, Atmos. Chem. Phys., 13, 11551–11571, https://doi.org/10.5194/acp-13-11551-2013, 2013.
Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28, 185–188, 1994.
Pierce, J. R. and Adams, P. J.: A computationally efficient aerosol nucleation/condensation method: pseudo-steady-state sulfuric acid, Aerosol Sci. Tech., 43, 216–226, 2009.
Pierce, J. R., Engelhart, G. J., Hildebrandt, L., Weitkamp, E. A., Pathak, R. K., Donahue, N. M., Robinson, A. L., Adams, P. J., and Pandis, S. N.: Constraining particle evolution from wall losses, coagulation, and condensation-evaporation in smog-chamber experiments: optimal estimation based on size distribution measurements, Aerosol Sci. Tech., 42, 1001–1015, https://doi.org/10.1080/02786820802389251, 2008.
Pierce, J. R., Riipinen, I., Kulmala, M., Ehn, M., Petäjä, T., Junninen, H., Worsnop, D. R., and Donahue, N. M.: Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events, Atmos. Chem. Phys., 11, 9019–9036, https://doi.org/10.5194/acp-11-9019-2011, 2011.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, https://doi.org/10.5194/acp-6-471-2006, 2006.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weikamp, E. A., Sage, A. M., Greishop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259–1262, 2007.
Sakamoto, K. M., Allan, J. D., Coe, H., Taylor, J. W., Duck, T. J., and Pierce, J. R.: Aged boreal biomass-burning aerosol size distributions from BORTAS 2011, Atmos. Chem. Phys., 15, 1633–1646, https://doi.org/10.5194/acp-15-1633-2015, 2015.
Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.
Stanier, C. O., Pathak, R. K., and Pandis, S. N.: Measurements of the volatility of aerosols from α-pinene ozonolysis, Environ. Sci. Technol., 41, 2756–2763, https://doi.org/10.1021/es0519280, 2007.
Vakkari, V., Kerminen, V., Beukes, J. P., Tiitta, P., van Zyl, P. G., Josipovic, M., Venter, A. D., Jaars, K., Worsnop, D. R., Kulmala, M., and Laakso, L.: Rapid changes in biomass burning aerosols by atmospheric oxidation, Geophys. Res. Lett., 41, 2644–2651, https://doi.org/10.1002/2014GL059396, 2014.
Weitkamp, E. A., Sage, A. M., Pierce, J. R., Donahue, N. M., and Robinson, A. L.: Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber, Environ. Sci. Technol., 41, 6969–6975, https://doi.org/10.1021/es070193r, 2007.
Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P. S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13, 8019–8043, https://doi.org/10.5194/acp-13-8019-2013, 2013.
Yeh, G. K. and Ziemann, P. J.: Alkyl nitrate formation from the reactions of C8–C14 n-Alkanes with OH Radicals in the Presence of NOx: measured yields with essential corrections for gas-wall partitioning, J. Phys. Chem. A., 118, 8147–8157, 2014.
Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., Campos, T., Shinozuka, Y., Kapustin, V., Clarke, A. D., Weinheimer, A., Knapp, D. J., Montzka, D. D., Holloway, J., Weibring, P., Flocke, F., Zheng, W., Toohey, D., Wennberg, P. O., Wiedinmyer, C., Mauldin, L., Fried, A., Richter, D., Walega, J., Jimenez, J. L., Adachi, K., Buseck, P. R., Hall, S. R., and Shetter, R.: Emissions from biomass burning in the Yucatan, Atmos. Chem. Phys., 9, 5785–5812, https://doi.org/10.5194/acp-9-5785-2009, 2009.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, P. Natl. Acad. Sci. USA, 111, 5802–5807, https://doi.org/10.1073/pnas.1404727111, 2014.
Zhang, X., Schwantes, R. H., McVay, R. C., Lignell, H., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H.: Vapor wall deposition in Teflon chambers, Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, 2015.
Short summary
Losses of semi-volatile vapors to Teflon walls may contribute to significant primary particle evaporation during wood-smoke aerosol experiments. These vapor losses may also affect secondary organic aerosol formation during these experiments.
Losses of semi-volatile vapors to Teflon walls may contribute to significant primary particle...
Altmetrics
Final-revised paper
Preprint