Articles | Volume 15, issue 2
https://doi.org/10.5194/acp-15-1029-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-1029-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model
G. Katata
CORRESPONDING AUTHOR
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
now at: Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT-IMK/IFU), Germany
M. Chino
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
T. Kobayashi
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
H. Terada
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
M. Ota
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
H. Nagai
Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 319-1195, Japan
M. Kajino
Meteorological Research Institute, Japan Meteorological Agency (JMA), Tsukuba, Ibaraki, 305-0052, Japan
R. Draxler
Air Resources Laboratory, National Oceanic and Atmospheric Administration (NOAA), University Research Court, College Park, Maryland, 20740, USA
M. C. Hort
Met Office, Exeter, Devon, EX1 3PB, UK
A. Malo
Canadian Meteorological Centre (CMC), Dorval, Quebec, H9P 1J3, Canada
T. Torii
JAEA, Chiyoda, Tokyo, 100-8577, Japan
Y. Sanada
JAEA, Fukushima, Fukushima, 960-1296, Japan
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Modeling impacts of dust mineralogy on fast climate response
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Predicting Hygroscopic Growth of Organosulfur Aerosol Particles Using COSMOtherm
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Revealing dominant patterns of aerosols regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Synergistic effects of previous winter NAO and ENSO on the spring dust activities in North China
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Impact of Biomass Burning Aerosols (BBA) on the tropical African climate in an ocean-atmosphere-aerosols coupled climate model
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study
Global modeling of aerosol nucleation with an explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations
Impact of acidity and surface-modulated acid dissociation on cloud response to organic aerosol
The contribution of residential wood combustion to the PM2.5 concentrations in the Helsinki metropolitan area
Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
Expanding the simulation of East Asian super dust storms: physical transport mechanisms impacting the western Pacific
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Zijun Li, Angela Buchholz, and Noora Hyttinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1182, https://doi.org/10.5194/egusphere-2024-1182, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing the aerosol-cloud climate interactions in the post-fossil fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here, a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with AS. A good agreement was observed between their model-estimated and experimental HGFs.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1000, https://doi.org/10.5194/egusphere-2024-1000, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties, and this method is verified from theoretical inspect. This method performs well for thickly coated BC at high RHs.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1024, https://doi.org/10.5194/egusphere-2024-1024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three SSP scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-955, https://doi.org/10.5194/egusphere-2024-955, 2024
Short summary
Short summary
This study examines how the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) in the previous winter affect spring dust activities in North China. The results show that NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both NAO and ENSO are negative, their combined effect on dust activities is even greater. This research underscores the importance of these climate patterns in predicting spring dust activities in North China.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840, https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Short summary
In March 2021, East Asia experienced an outbreak of severe dust storms after an absence of one and a half decades. Here, we innovative used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize the dust emission and reproduce the dust storm. This work is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
EGUsphere, https://doi.org/10.5194/egusphere-2024-496, https://doi.org/10.5194/egusphere-2024-496, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean-atmosphere-aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low cloud fraction, decreasing the ocean and continental surface temperature and by reducing the precipitation of the coastal Western Africa. It also highlights the key role of the ocean temperature response and its feedbacks for the September to November season.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen Arnold, Leighton Regayre, Meinrat Andreae, Mira Pöhlker, Duseong Jo, Man Yue, and Ken Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-401, https://doi.org/10.5194/egusphere-2024-401, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model. The updated model shows better agreement with measurements of nucleation rate, growth rate, NPF event frequency. Our results reveal that HOMs-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024, https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface-related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large-scale climate models as many organic aerosol components are both acidic and surface-active.
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Cited articles
Abdul-Razzak, H., and Ghan, S. J.: A parameterization of aerosol activation, 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.
Achim, P., Monfort, M., Le Petit, G., Gross, P., Douysset, G., Taffary, T., Blanchard, X., and Moulin, C.: Analysis of radionuclide releases from the Fukushima Dai-ichi Nuclear Power Plant Accident Part II, Pure Appl. Geophys., 171, 645–667, https://doi.org/10.1007/s00024-012-0578-1, 2014.
Adachi, K., Kajino, M., Zaizen, Y., and Igarashi, Y.: Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident, Sci. Rep., 3, 2554, https://doi.org/10.1038/srep02554, 2013.
Amano, H., Akiyama, M., Chunlei, B., Kawamura, T., Kishimoto, T., Kuroda, T., Muroi, T., Odaira, T., Ohta, Y., Takeda, K., Watanabe, Y., and Morimoto, T.: Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident, J. Environ. Radioactiv., 111, 42–52, https://doi.org/10.1016/j.jenvrad.2011.10.019, 2012.
Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmos. Chem. Phys., 3, 131–143, https://doi.org/10.5194/acp-3-131-2003, 2003.
Andronache, C.: Estimates of sulfate aerosol wet scavenging coefficient for locations in the Eastern United States, Atmos. Environ., 38, 795–804, https://doi.org/10.1016/j.atmosenv.2003.10.035, 2004.
Aoyama, M., Tsumune, D., and Hamajima, Y.: Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident, J. Radioanal. Nucl. Ch., 296, 535–539, https://doi.org/10.1007/s10967-012-2033-2, 2012.
Baklanov, A. and Sørensen, J. H.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth, 26, 787–799, https://doi.org/10.1016/S1464-1909(01)00087-9, 2001.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 1–6, 2006.
Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into atmosphere, J. Nucl. Sci. Technol., 48, 1129–1134, https://doi.org/10.1080/18811248, 2011.
Christoudias, T. and Lelieveld, J.: Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident, Atmos. Chem. Phys., 13, 1425–1438, https://doi.org/10.5194/acp-13-1425-2013, 2013.
Comprehensive Nuclear-Test-Ban Treaty Organization, Preparatory Commission (CTBTO): Fukushima-related Measurements by CTBTO, available at: http://www.ctbto.org/press-centre/highlights/2011/fukushima-related-measurements-by-the-ctbto (last access: 12 November 2014), 2011.
Croft, B., Lohmann, U., Martin, R. V., Stier, P., Wurzler, S., Feichter, J., Posselt, R., and Ferrachat, S.: Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM, Atmos. Chem. Phys., 9, 4653–4675, https://doi.org/10.5194/acp-9-4653-2009, 2009.
D'Amours, R., Malo, A., Servranckx, R., Bensimon, D., Trudel, S., and Gauthier, J.-P.: Application of the atmospheric Lagrangian particle dispersion model MLDP0 to the 2008 eruptions of Okmok and Kasatochi volcanoes, J. Geophys. Res., 115, D00L11, https://doi.org/10.1029/2009JD013602, 2010.
Dasch, M. J.: Hydrological and chemical inputs to fir trees from rain and clouds during a 1-month study at Clingmans Peak, NC, Atmos. Environ., 22, 2255–2262, 1988.
Davis, W. E.: A model for in-cloud scavenging of cosmogenic radionuclides, J. Geophys. Res., 77, 2159–2165, https://doi.org/10.1029/JC077i012p02159, 1972.
Draxler, R. R.: The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, DC, Weather Forecast., 21, 383–394, 2006.
Draxler, R. R. and Rolph, G. D.: Evaluation of the transfer coefficient matrix (TCM) approach to model the atmospheric radionuclide air concentrations from Fukushima, J. Geophys. Res., 117, D05107, https://doi.org/10.1029/2011JD017205, 2012.
Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., and Wotawa, G.: World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi Nuclear Power Plant accident, J. Environ. Radioactiv., 172–184, https://doi.org/10.1016/j.jenvrad.2013.09.014,139, 2015
Dvorzhak, A., Puras, C., and Montero, M.: Spanish experience on modeling of environmental radioactive contamination due to Fukushima Daiichi NPP Accident using JRODOS, Environ. Sci. Technol., 46, 11887–11895, https://doi.org/10.1021/es301687t, 2012.
Eugster, W., Burkard, R., Holwerda, F., Scatena, F. N., and Bruijnzeel, L. A.: Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest, Agr. Forest Meteorol., 139, 288–306, https://doi.org/10.1016/j.agrformet.2006.07.008, 2006.
Evangeliou, N., Balkanski, Y., Cozic, A., and Moller, A. P.: Global transport and deposition of Cs-137 following the Fukushima Nuclear Power Plant Accident in Japan: emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools, Environ. Sci. Technol., 47, 5803–5812, https://doi.org/10.1021/es400372u, 2013.
Feng, J.: A size-resolved model for below-cloud scavenging of aerosols by snowfall, J. Geophys. Res., 114, D08203, https://doi.org/10.1029/2008JD011012, 2009.
Fuchs, N. A.: The Mechanics of Aerosols, Pergamon Press, Oxford, 1964.
Fukushima Prefecture: Results of environmental radioactivity monitoring around 20 km–50 km zone, available at: http://www.pref.fukushima.jp/j/20-50km0315-0331.pdf (last access: 12 November 2014), 2011a (in Japanese).
Fukushima Prefecture: Results of environmental radioactivity monitoring in Fukushima Prefecture, available at: http://www.pref.fukushima.jp/j/7houbu0311-0331.pdf (last access: 25 Novemner 2014), 2011b (in Japanese).
Fukushima Prefecture: Results of air dose rate measurement on March 2011 (data retrieved from monitoring posts in Fukushima Prefecture), available at: http://www.atom-moc.pref.fukushima.jp/monitoring/monitoring201103/201103_mpdata.html (last access: 12 November 2014), 2012 (in Japanese).
Furuno, A., Terada, H., Chino, M., and Yamazawa, H.: Experimental verification for real-time environmental emergency response system: WSPEEDI by European tracer experiment, Atmos. Environ., 38, 6989–6998, https://doi.org/10.1016/j.atmosenv.2004.02.074, 2004.
Furuta, S., Sumiya, S., Watanabe, H., Nakano, M., Imaizumi, K., Takeyasu, M., Nakada, A., Fujita, H., Mizutani, T., Morisawa, M., Kokubun, Y., Kono, T., Nagaoka, M., Yokoyama, H., Hokama, T., Isozaki, T., Nemoto, M., Hiyama, Y., Onuma, T., Kato, C., and Kurachi, T.: Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi Nuclear Power Plant; Interim report (Ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout), JAEA-Review 2011-035, Japan Atomic Energy Agency, Ibaraki, Japan, 2011 (in Japanese with English abstract).
Gallagher, M. W., Choularton, T. W., Morse, A. P., and Fowler, D.: Measurements of the size dependence of cloud droplet deposition at a hill site, Q. J. Roy. Meteor. Soc., 114, 1291–1303, 1988.
Gallagher, M. W., Beswick, K. M., Choularton, T. W., Duyzer, J., Westrate, H., and Hummelshøj, P.: Measurements of aerosol fluxes to speulder forest using a micrometeorological technique, Atmos. Environ., 31, 359–373, https://doi.org/10.1016/S1352-2310(96)00057-X, 1997.
Gilfedder, B. S., Lai, S. C., Petri, M., Biester, H., and Hoffmann, T.: Iodine speciation in rain, snow and aerosols, Atmos. Chem. Phys., 8, 6069–6084, https://doi.org/10.5194/acp-8-6069-2008, 2008.
Giorgi, F. and Chameides, W. L.: Rainout lifetimes of highly soluble aerosols and gases inferred from simulations with a general circulation model, J. Geophys. Res., 91, 14367–14376, 1986.
Graedel, T. E. and Franey, J. P.: Field measurements of submicron aerosol washout by snow, Geophys. Res. Lett., 2, 325–328, https://doi.org/10.1029/GL002i008p00325, 1975.
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A Description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note NCAR/TN-3921STR, Boulder, CO, 122 pp., 1994.
Haba, H., Kaneya, J., Mukai, H., Kambara, T., and Kase, M.: One-year monitoring of airborne radionuclides in Wako, Japan, after the Fukushima Dai-ichi nuclear power plant accident in 2011, Geochem. J., 46, 271–278, 2012.
HCRM (Health Canada's Radiation Monitoring): Health Canada's Radiation Monitoring (HCRM) Data and the Nuclear Emergency in Japan, the CTBTO data for Canadian stations, http://www.hc-sc.gc.ca/hc-ps/ed-ud/respond/nuclea/data-donnees-eng.php (last access: 25 November 2014), 2011.
Henzing, J. S., Olivié, D. J. L., and van Velthoven, P. F. J.: A parameterization of size resolved below cloud scavenging of aerosols by rain, Atmos. Chem. Phys., 6, 3363–3375, https://doi.org/10.5194/acp-6-3363-2006, 2006.
Hertel, O., Christensen, J., Runge, E. H., Asman, W. A. H., Berkowicz, R., Hovmand, M. F., and Hov, Ø.: Development and testing of a new variable scale air pollution model – ACDEP, Atmos. Environ., 29, 1267–1290, https://doi.org/10.1016/1352-2310(95)00067-9, 1995.
Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P., and Matt, D. R.: A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Poll., 36, 311–330, https://doi.org/10.1007/BF00229675, 1987.
Hirao, S., Yamazawa, H.; Nagae, T.: Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi nuclear power plant, J. Nucl. Sci. Technol., 50, 139–147, https://doi.org/10.1080/00223131.2013.757454, 2013.
Honda, M. C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T.: Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident, Geochem. J., 46, E1–E9, 2012.
Hongisto, M.: HILATAR, a Regional Scale Grid Model for the Transport of Sulphur and Nitrogen Compounds, Description of the Model and Simulation Results for the Year 1993, Finnish Meteorological Institute, Helsinki, No. 21, 1998.
Ibaraki Prefecture: Radiation Dose Measurements in Ibaraki Prefecture, available at: http://www.pref.ibaraki.jp/20110311eq/radiation.html (last access: 12 November 2014), 2011 (in Japanese).
Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge, 828 pp., 2005.
Jones, A. R., Thomson, D. J., Hort, M. C., and Devenish, B.: The UK Met Office's next-generation atmospheric dispersion model, NAME III, in: Air Pollution and its Applications XVII, edited by: Borrego, C. and Norman, A. L., Proceedings of the 27th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Application, Springer, 580–589, 2007.
Jylhä, K.: Empirical scavenging coefficients of radioactive substances released from chernobyl, Atmos. Environ., 25, 263–270, https://doi.org/10.1016/0960-1686(91)90297-K, 1991.
Kajino, M., Inomata, Y., Sato, K., Ueda, H., Han, Z., An, J., Katata, G., Deushi, M., Maki, T., Oshima, N., Kurokawa, J., Ohara, T., Takami, A., and Hatakeyama, S.: Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type, Atmos. Chem. Phys., 12, 11833–11856, https://doi.org/10.5194/acp-12-11833-2012, 2012.
Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T., and Ikemori, F.: Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident, Environ. Sci. Technol., 46, 5720–5726, https://doi.org/10.1021/es204667h, 2012.
Katata, G.: Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements, J. Geophys. Res., 119, 8137–8159, https://doi.org/10.1002/2014JD021669, 2014.
Katata, G., Nagai, H., Wrzesinsky, T., Klemm, O., Eugster, W., and Burkard, R.: Development of a land surface model including cloud water deposition on vegetation, J. Appl. Meteorol.Climatol., 47, 2129–2146, 2008.
Katata, G., Kajino, M., Hiraki, T., Aikawa, M., Kobayashi, T., and Nagai, H.: A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model, J. Geophys. Res., 116, D20102, https://doi.org/10.1029/2010JD015552, 2011a.
Katata, G., Nagai, H., Zhang, L., Held, A., Serça, D., and Klemm, O.: Development of an atmosphere–soil–vegetation model for investigation of radioactive materials transport in the terrestrial biosphere, Prog. Nucl. Sci. Technol., 2, 530–537, 2011b.
Katata, G., Terada, H., Nagai, H., and Chino, M.: Numerical reconstruction of high dose rate zones due to the Fukushima Daiichi Nuclear Power Plant accident, J. Environ. Radioact., 111, 2–12, https://doi.org/10.1016/j.jenvrad.2011.09.011, 2012a.
Katata, G., Ota, M., Terada, H., Chino, M., and Nagai, H.: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident, J. Environ. Radioactiv., 109, 103–113, https://doi.org/10.1016/j.jenvrad.2012.02.006, 2012b.
Katata, G., Kajino, M., Matsuda, K., Takahashi, A., and Nakaya, K.: A numerical study of the effects of aerosol hygroscopic properties to dry deposition on a broad-leaved forest, Atmos. Environ., 97, 501–510, https://doi.org/10.1016/j.atmosenv.2013.11.028, 2014.
Kawamura, H., Kobayashi, T., Furuno, A., Usui, N., Kamachi, M.: Numerical simulation on the long-term variation of radioactive cesium concentration in the North Pacific due to the Fukushima disaster, J. Environ. Radioact., 136, 64–75, https://doi.org/10.1016/j.jenvrad.2014.05.005, 2014.
KEK (High Energy Accelerator Research Organization): Radiation monitoring at KEK, available at: http://legacy.kek.jp/quake/radmonitor/index-e.html (last access: 12 November 2014), 2011.
Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632, https://doi.org/10.5194/acp-6-4617-2006, 2006.
Kirsch, A. A. and Fuchs, N. A.: Studies on fibrous aerosol filters. III. Diffusional deposition of aerosols in fibrous filters, Ann. Occup. Hyg., 11, 299–304, 1968.
Klemm, O. and Wrzesinsky, T.: Fog deposition fluxes of water and ions to a mountainous site in Central Europe, Tellus B, 59, 705–714, https://doi.org/10.1111/j.1600-0889.2007, 2007.
Kobayashi, T., Otosaka, S., Togawa, O., and Hayashi, K.: Development of a non-conservative radionuclides dispersion model in the ocean and its application to surface cesium-137 dispersion in the Irish Sea, J. Nucl. Sci. Technol., 44, 238–247, doi"10.1080/18811248.2007.9711278, 2007.
Kobayashi, T., Nagai, H., Chino, M., and Kawamura, H.: Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations, J. Nucl. Sci. Technol., 50, 255–264, https://doi.org/10.1080/00223131.2013.772449, 2013.
Korsakissok, I., Mathieu, A., and Didier, D.: Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study, Atmos. Environ., 70, 267–279, https://doi.org/10.1016/j.atmosenv.2013.01.002, 2013.
Kyrö, E. M., Grönholm, T., Vuollekoski, H., Virkkula, A., Kulmala, M., and Laakso, L.: Snow scavenging of ultrafine particles: field measurements and parameterization, Boreal Environ. Res., 14, 527–538, 2009.
Laakso, L., Grönholm, T., Rannik, U., Kosmale, M., Fiedler, V., Vehkamäki, H., and Kulmala, M.: Ultrafine particle scavenging coefficients calculated from 6 years field measurements, Atmos. Environ., 37, 3605–3613, https://doi.org/10.1016/S1352-2310(03)00326-1, 2003.
Leadbetter, S., Hort, M., Jones, A., Webster, H., and Draxler, R.: Sensitivity of the modeled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterization in NAME, 200–211, https://doi.org/10.1016/j.atmosenv.2014.03.018, 139, 2015.
Levine, S. Z. and Schwartz, S. E.: In-cloud and below-cloud scavenging of Nitric acid vapor, Atmos. Environ., 16, 1725–1734, https://doi.org/10.1016/0004-6981(82)90266-9, 1982.
Lin, Y.-L., Richard, D. F., and Harold, D. O.: Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092, 1983.
Lovett, G. M.: Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest, Atmos. Environ., 18, 361–371, https://doi.org/10.1016/0004-6981(84)90110-0, 1984.
Maryon, R. H. and Ryall, D. B.: Developments to the UK Nuclear Accident Response Model (NAME), Department of Environment, UK Met. Office, DoE Report # DOE/RAS/96.011, London, UK, 1996.
Masson, O., Baeza, A., Bieringer, J., Brudecki, K., Bucci, S., Cappai, M., Carvalho, F. P., Connan, O., Cosma, C., Dalheimer, A., Didier, D., Depuydt, G., De Geer, L. E., De Vismes, A., Gini, L., Groppi, F., Gudnason, K., Gurriaran, R., Hainz, D., Halldorsson, O., Hammond, D., Hanley, O., Holey, K., Zs Homoki,., Ioannidou, A., Isajenko, K., Jankovic, M., Katzlberger, C., Kettunen, M., Kierepko, R., Kontro, R., Kwakman, P. J. M., Lecomte, M., Leon Vintro, L., Leppänen, A.-P., Lind, B., Lujaniene, G., Mc Ginnity, P., Mc Mahon, C., Mala, H., Manenti, S., Manolopoulou, M., Mattila, A., Mauring, A., Mietelski, J. W., Moller, B., Nielsen, S. P., Nikolic, J., Overwater, R. M. W., Palsson, S. E., Papastefanou, C., Penev, I., Pham, M. K., Povinec, P. P., Ramebäck, H., Reis, M. C., Ringer, W., Rodriguez, A., Rulik, P., Saey, P. R. J., Samsonov, V., Schlosser, C., Sgorbati, G., Silobritiene, B. V., Söderström, C., Sogni, R., Solier, L., Sonck, M., Steinhauser, G., Steinkopff, T., Steinmann, P., Stoulos, S., Sykora, I., Todorovic, D., Tooloutalaie, N., Tositti, L., Tschiersch, J., Ugron, A., Vagena, E., Vargas, A., Wershofen, H., and Zhukova, O.: Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European Networks, Environ. Sci. Technol., 45, 7670–7677, https://doi.org/10.1021/es2017158, 2011.
Mathieu, A., Korsakissok, I., Quélo, D., Groëll, J., Tombette, M., Didier, D., Quentric, E., Saunier, O., Benoit, J.-P., and Isnard, O.: Atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi nuclear power plant accident, Elements, 8, 195–200, https://doi.org/10.1175/1520-0450(1998)037, 2012.
Masuda, S., Awaji, T., Sugiura, N., Toyoda, T., Ishikawa, Y., and Horiuchi, K.: Interannual variability of temperature inversions in the subarctic North Pacific, Geophys. Res. Lett., 33, L24610, https://doi.org/10.1029/2006GL027865, 2006.
Matsuda, K., Fujimura, Y., Hayashi, K., Takahashi, A., and Nakaya, K.: Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan, Atmos. Environ., 44, 4582–4587, https://doi.org/10.1016/j.atmosenv.2010.08.015, 2010.
METI (Ministry of Economy, Trade and Industry), available at: http://www.meti.go.jp/press/2011/06/20110603019/20110603019.html (last access: 12 November 2014), 2011 (in Japanese).
Miller, C. T., Poirier Mcneill, M. M., and Mayer, A. S.: Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics, Water Resour. Res., 26, 2783–2796, https://doi.org/10.1029/WR026i011p02783, 1990.
Miller, N. L. and Wang, P. K.: Theoretical determination of the efficiency of aerosol particle collection by falling columnar ice crystals, J. Atmos. Sci., 46, 1656–1663, https://doi.org/10.1175/1520-0469, 1989.
Ministry of the Environment of Japan: Comprehensive summary report on acid deposition monitoring survey Phase 4, available at: http://db.cger.nies.go.jp/dataset/acidrain/ja/04/index.html (last access: 12 November 2014), 2010 (in Japanese).
Minoura, H. and Iwasaka, Y.: Ion concentration changes observed in drizzling rains, Atmos. Res., 45, 165–182, https://doi.org/10.1016/S0169-8095(97)00041-0, 2006.
Mircea, M. and Stefan, S.: A theoretical study of the microphysical parameterization of the scavenging coefficient as a function of precipitation type and rate, Atmos. Environ., 32, 2931–2938, https://doi.org/10.1016/S1352-2310(98)00018-1, 1998.
Miyamoto, Y., Yasuda, K., and Magara, M.: Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident, J. Environ. Radioactiv., 132, 1–7, https://doi.org/10.1016/j.jenvrad.2014.01.010, 2014.
Morino, Y., Ohara, T., and Nishizawa, M.: Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophys. Res. Lett., 38, L00G11, https://doi.org/10.1029/2011GL048689, 2011.
Morino, Y., Ohara, T., Watanabe, M., Hayashi, S., and Nishizawa, M.: Episode analysis of deposition of radiocesium from the Fukushima Daiichi nuclear power plant accident, Environ. Sci. Technol., 47, 2314–2322, https://doi.org/10.1021/es304620x, 2013.
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A new double-moment microphysics parameterization for application in cloud and climate models, Part I: Description, J. Atmos. Sci., 62, 1665–1677, 2005.
NOAA (National Oceanic and Atmospheric Administration): National Oceanic and Atmospheric Administration, Air Resources Laboratory, Fukushima Daiichi Nuclear Power Plant Transfer Coefficient Matrix, available at: http://ready.arl.noaa.gov/READY_fdnpp.php (last access: 12 November 2014), 2012.
NOAA: World Meteorological Organization (WMO) Atmospheric Dispersion Model Simulations of Fukushima Daiichi Accident, US National Oceanic and Atmospheric Administration, available at: http://ready.arl.noaa.gov/READY_fdnppwmo.php (last access: 12 November 2014), 2014.
Nishihara, K., Iwamoto, H., and Suyama, K.: Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant, JAEA-Data/Code 2012-018, Japan Atomic Energy Agency, 2012 (in Japanese with English abstract).
NRA (Nuclear Regulation Authority), Readings of Seawater and Dust Monitoring in Sea Area by MEXT (March 2011), http://radioactivity.nsr.go.jp/en/list/259/list-201103.html, 2011 (last access: 12 November 2014)
NRA: Airborne Monitoring Results in each prefecture, available at: http://radioactivity.nsr.go.jp/en/list/203/list-1.html (last accress: 12 November 2014), 2012a.
NRA: Readings of dust sampling (All Results for May 2011), available at: http://radioactivity.nsr.go.jp/en/contents/4000/3156/24/dust sampling_All Results for May 2011.pdf (last access: 12 November 2014), 2012b.
Ohfuchi, W., Nakamura, H., Yoshioka, M. K., Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K.: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: preliminary outcomes of AFES (AGCM for the Earth Simulator), J. Earth Simulator, 1, 8–34, https://doi.org/10.1029/2004GL019895, 2004.
Ohkura, T., Oishi, T., Taki, M., Shibanuma, Y., Kikuchi, M., Akino, H., Kikuta, Y., Kawasaki, M., Saegusa, J., Tsutsumi, M., Ogose, H., Tamura, S., and Sawahata, T.: Emergency Monitoring of Environmental Radiation and Atmospheric Radionuclides at Nuclear Science Research Institute, JAEA Following the Accident of Fukushima Daiichi Nuclear Power Plant, JAEA-Data/Code 2012-01, Japan Atomic Energy Agency, Ibaraki, Japan, 2012 (in Japanese with English abstract).
Okita, T., Hara, H., and Fukuzaki, N.: Measurements of atmospheric SO2 and \chemSO_4^{2-}, and determination of the wet scavenging coefficient of sulfate aerosols for the winter monsoon season over the sea of Japan, Atmos. Environ., 30, 3733–3739, 1996.
Oshima, N., Koike, M., Kondo, Y., Nakamura, H., Moteki, N., Matsui, H., Takegawa, N., and Kita, K.: Vertical transport mechanisms of black carbon over East Asia in spring during the A-FORCE aircraft campaign, J. Geophys. Res., 118, 13175–13198, https://doi.org/10.1002/2013JD020262, 2013.
Paramonov, M., Grönholm, T., and Virkkula, A.: Below-cloud scavenging of aerosol particles by snow at an urban site in Finland, Boreal Environ. Res., 16, 304–320, 2011.
Peters, K. and Eiden, R.: Modelling the dry deposition velocity of aerosol particles to a spruce forest, Atmos. Environ., 26A, 2555–2564, https://doi.org/10.1016/0960-1686(92)90108-W, 1992.
Petroff, A. and Zhang, L.: Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geosci. Model Dev., 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010, 2010.
Petroff, A., Zhang, L., Pryor, S. C., and Belot, Y.: An extended dry deposition model for aerosols onto broadleaf canopies, J. Aerosol Sci., 40, 218–240, https://doi.org/10.1016/j.jaerosci.2008, 2009.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Prime Minister of Japan and His Cabinet: Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety – The Accident at TEPCO's Fukushima Nuclear Power Stations, available at: http://japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html (last access: 12 November 2014), 2011.
RADNET: United States Environmental Protection Agency's Radiation monitoring Network (RADNET) Sampling Data for the Japanese Nuclear Emergency, available at: http://www.epa.gov/japan2011/rert/radnet-sampling-data.html (last access: 12 November 2014), 2011.
Reisner, J., Rasmussen, R. M., and Bruintjes, R. T.: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Q. J. Roy. Meteor. Soc., 124, 1071–1107, https://doi.org/10.1002/qj.49712454804, 1998.
Sanada, N. and Torii, T.: Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter, J. Environ. Radioact., 139, 294–299, https://doi.org/10.1016/j.jenvrad.2014.06.027, 2015.
Saunier, O., Mathieu, A., Didier, D., Tombette, M., Quélo, D., Winiarek, V., and Bocquet, M.: An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations, Atmos. Chem. Phys., 13, 11403–11421, https://doi.org/10.5194/acp-13-11403-2013, 2013.
Sauter, D. P. and Wang, P. K.: An experimental study of the scavenging of aerosol particles by natural snow crystals, J. Atmos. Sci., 46, 1650–1655, https://doi.org/10.1175/1520-0469(1989)0462.0.CO;2, 1989.
Sehmel, G. A.: Particle and gas dry deposition: a review, Atmos. Environ., 14, 983–1011, https://doi.org/10.1016/0004-6981(80)90031-1, 1980.
Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99–164, 1963.
Sparmacher, H., Fulber, K., and Bonka, H.: Below-cloud scavenging of aerosol particles: particle-bound radionuclides – experimental, Atmos. Environ., 27, 605–618, https://doi.org/10.1016/0960-1686(93)90218-N, 1993.
Srinivas, C. V., Venkatesan, R., Baskaran, R., Rajagopal, V., and Venkatraman, B.: Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor, Atmos. Environ., 61, 66–84, https://doi.org/10.1016/j.atmosenv.2012.06.082, 2012.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, 2012.
Sugiura, N., Awaji, T., Masuda, S., Mochizuki, T., Toyoda, T., Miyama, T., Igarashi, H., and Ishikawa, Y.: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations, J. Geophys. Res., 113, C10017, https://doi.org/10.1029/2008JC004741, 2008.
Sugiyama, G., Nasstrom, J., Pobanz, B., Foster, K., Simpson, M., Vogt, P., Aluzzi, F., and Homann, S.: Atmospheric sispersion modeling: challenges of the Fukushima Daiichi response, Health Phys., 102, 493–508, https://doi.org/10.1097/HP.0b013e31824c7bc9, 2012.
Takemura, T., Nakamura, H., Takigawa, M., Kondo, H., Satomura, T., Miyasaka, T., and Nakajima, T.: A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant, Sola, 7, 101–104, 2011.
Takeyasu, M. and Sumiya, S.: Estimation of dry deposition velocities of radionuclides released by the accident at the Fukushima Dai-ichi Nuclear Power Plant, Prog. Nucl. Sci. Technol., 4, 64–67, 2014.
Tanabe, F.: A scenario of large amount of radioactive materials discharge to the air from the Unit 2 reactor in the Fukushima Daiichi NPP accident, J. Nucl. Sci. Technol., 49, 360–365, 2012.
Ten Hoeve, J. E. and Jacobson, M. Z.: Worldwide health effects of the Fukushima Daiichi nuclear accident, Energ. Environ. Sci., 5, 8743–8757, https://doi.org/10.1039/C2EE22019A, 2012.
TEPCO (Tokyo Electric Power Company): Press Releases, available at: http://www.tepco.co.jp/en/press/corp-com/release/index-e.html (last access: 12 November 2014), 2011a.
TEPCO: Radiation dose measured in the Fukushima Daiichi Nuclear Power Station 2011 Archives, available at: http://www.tepco.co.jp/en/nu/fukushima-np/f1/indexold-e.html (last access: 12 November 2014), 2011b.
TEPCO: Radiation dose measured in the Fukushima Daiichi Nuclear Power Station 2011 Archives, available at: http://www.tepco.co.jp/en/nu/fukushima-np/f2/index-e.html (last access: 12 November 2014), 2011c.
TEPCO: Release of the Fukushima Nuclear Accidents Investigation Report, available at: http://www.tepco.co.jp/en/press/corp-com/release/2012/1205638_1870.html (last access: 12 November 2014), 2012.
Terada, H. and Chino, M.: Improvement of Worldwide Version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI), (II) Evaluation of numerical models by 137Cs deposition due to the Chernobyl nuclear accident, J. Nucl. Sci. Technol., 42, 651–660, https://doi.org/10.1080/18811248.2004.9715527, 2005.
Terada, H. and Chino, M.: Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident, J. Nucl. Sci. Technol., 45, 920–931, https://doi.org/10.1080/18811248.2008.9711493, 2008.
Terada, H., Furuno, A., and Chino, M.: Improvement of Worldwide Version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI), (I) New combination of models, atmospheric dynamic model MM5 and particle random walk model GEARN-new, J. Nucl. Sci. Technol., 41, 632–640, https://doi.org/10.1080/18811248.2004.9715527, 2004.
Terada, H., Katata, G., Chino, M., and Nagai, H.: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioactiv., 112, 141–154, https://doi.org/10.1016/j.jenvrad.2012.05.023, 2012.
Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., and Klemm, O.: Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe, Atmos. Res., 64, 147–158, https://doi.org/10.1016/S0169-8095(02)00087-X, 2002.
Tochigi Prefecture: Results of Environmental Radioactivity (Air Dose Rate), available at: http://www.pref.tochigi.lg.jp/kinkyu/documents/20110312-18.pdf (last access: 12 November 2014), 2011 (in Japanese).
Tohoku Electric Power, available at: http://www.tohoku-epco.co.jp/news/atom/topics/1183332_1984.html (last access: 12 November 2014), 2011 (in Japanese).
Tokyo Metropolitan Government: Measurement of nuclear fission products of dust particles in the air in Tokyo, available at: http://www.sangyo-rodo.metro.tokyo.jp/whats-new/measurement-kako.html (last access: 12 November 2014), 2011 (in Japanese).
Torii, T., Sugita, T., Okada, C. E., Reed, M. S., and Blumenthal, D. J.: Enhanced analysis methods to derive the spatial distribution of I-131 deposition on the ground by airborne surveys at an early stage after the Fukushima Daiichi nuclear power plant accident, Health Phys., 105, 192–200, https://doi.org/10.1097/HP.0b013e318294444e, 2013.
Tost, H., Jöckel, P., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling, Atmos. Chem. Phys., 6, 565–574, https://doi.org/10.5194/acp-6-565-2006, 2006.
Tsuruta, H., Takigawa, M., and Nakajima, M., Summary of atmospheric measurements and transport pathways of radioactive materials released by the Fukushima Daiichi Nuclear Power Plant accident, edited by: Kurihara, O., Akahane, K., Fukuda, S., Miyahara, N., and Yonai, S., Proceedings on the 1st NIRS Symposium on Reconstruction of Early Internal Dose in the TEPCO Fukushima Daiichi Nuclear Power Station Accident, Nat. Inst. Radio. Sci., 101–111, 2012.
Uematsu, M., Merrill, J. T., Patterson, T. L., Duce, R. A., and Prospero, J. M.: Aerosol residence times and iodine gas/particle conversion over the North Pacific as determined from Chernobyl radioactivity, Geochem. J., 22, 157–163, https://doi.org/10.2343/geochemj.22.157, 1988.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation): UNSCEAR 2013 Report: Sources, Effects and Risks of Ionizing Radiation, Vol. I, available at: http://www.unscear.org/docs/reports/2013/13-85418_Report_2013_Annex_A.pdf (last access: 12 November 2014), 2014.
US DOE (Department of Energy): Response to 2011 Fukushima Incident – Data and Documentation, available at: http://energy.gov/downloads/us-doennsa-response-2011 (last access: 12 November 2014), 2011.
US NDC (United States National Data Center): United States National Data Center, International Monitoring System Data for the CTBTO network, available at: http://www.usandc.gov/radionuclide.html (last access: 12 November 2014), 2011.
US NRC (Nuclear Regulatory Commission): RASCAL 4: Description of Models and Methods, NUREG-1940, Richland, WA, 2012.
Wang, X., Zhang, L., and Moran, M. D.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685–5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wesely, M. L. and Hicks, B. B.: Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation, J. Air Pollut. Control Assoc., 27, 1110–1116, https://doi.org/10.1080/00022470.1977.10470534, 1977.
Winiarek, V., Bocquet, M., Duhanyan, N., Roustan, Y., Saunier, O., and Mathieu, A.: Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations, Atmos. Environ., 82, 268–279, https://doi.org/10.1016/j.atmosenv.2013.10.017, 2014.
WMO (World Meteorological Organization): Evaluation of Meteorological Analyses for the Radionuclide Dispersion and Deposition from the Fukushima Daiichi Nuclear Power Plant Accident, 1120, 64 pp., available at: https://www.wmo.int/e-catalog/detail_en.php?PUB_ID=669&SORT=N&q= (last access: 12 November 2014), 2014.
Wolf, M. A. and Dana, M. T.: Experimental studies on precipitation scavenging, USAEC Report BNWL-105, Battelle Pacific Northwest Laboratory, Richland, Wash., 18–25, 1969.
Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., and Yasunari, T.: Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident, Proc. Natl. Acad. Sci. USA, 108, 19530–19580, https://doi.org/10.1073/pnas.1112058108, 2011.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Wang, X., Moran, M. D., and Feng, J.: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols, Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, 2013.
Short summary
The detailed atmospheric releases during the Fukushima Daiichi Nuclear Power Station accident were estimated using a reverse estimation method with atmospheric and oceanic dispersion models. The major releases occurred on the afternoon of 12 March, midnight of 14 March, the morning and night of 15 March, and the morning of 16 March in 2011. Several atmospheric dispersion models with our new source term reproduced the local and regional patterns of I-131 and Cs-137 deposition and air dose rate.
The detailed atmospheric releases during the Fukushima Daiichi Nuclear Power Station accident...
Altmetrics
Final-revised paper
Preprint