Articles | Volume 14, issue 14
https://doi.org/10.5194/acp-14-7533-2014
https://doi.org/10.5194/acp-14-7533-2014
Technical note
 | 
28 Jul 2014
Technical note |  | 28 Jul 2014

Technical Note: 30 years of HIRS data of upper tropospheric humidity

K. Gierens, K. Eleftheratos, and L. Shi

Related authors

Kinematic properties of regions that can involve persistent contrails over the North Atlantic and Europe during April and May 2024
Sina Maria Hofer and Klaus Martin Gierens
Atmos. Chem. Phys., 25, 6843–6856, https://doi.org/10.5194/acp-25-6843-2025,https://doi.org/10.5194/acp-25-6843-2025, 2025
Short summary
Synoptic and microphysical lifetime constraints for contrails
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2025-326,https://doi.org/10.5194/egusphere-2025-326, 2025
Short summary
Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data
Ziming Wang, Luca Bugliaro, Klaus Gierens, Michaela I. Hegglin, Susanne Rohs, Andreas Petzold, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 25, 2845–2861, https://doi.org/10.5194/acp-25-2845-2025,https://doi.org/10.5194/acp-25-2845-2025, 2025
Short summary
How well can persistent contrails be predicted? An update
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024,https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment
Dario Sperber and Klaus Gierens
Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023,https://doi.org/10.5194/acp-23-15609-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluating spatiotemporal variations and exposure risk of ground-level ozone concentrations across China from 2000 to 2020 using high-resolution satellite-derived data
Qingqing He, Jingru Cao, Pablo E. Saide, Tong Ye, Weihang Wang, Ming Zhang, and Jiejun Huang
Atmos. Chem. Phys., 25, 6663–6677, https://doi.org/10.5194/acp-25-6663-2025,https://doi.org/10.5194/acp-25-6663-2025, 2025
Short summary
Water vapour isotopes over West Africa as observed from space: which processes control tropospheric H2O ∕ HDO pair distributions?
Christopher Johannes Diekmann, Matthias Schneider, Peter Knippertz, Tim Trent, Hartmut Boesch, Amelie Ninja Roehling, John Worden, Benjamin Ertl, Farahnaz Khosrawi, and Frank Hase
Atmos. Chem. Phys., 25, 5409–5431, https://doi.org/10.5194/acp-25-5409-2025,https://doi.org/10.5194/acp-25-5409-2025, 2025
Short summary
Evidence of successful methane mitigation in one of Europe's most important oil production region
Gerrit Kuhlmann, Foteini Stavropoulou, Stefan Schwietzke, Daniel Zavala-Araiza, Andrew Thorpe, Andreas Hueni, Lukas Emmenegger, Andreea Calcan, Thomas Röckmann, and Dominik Brunner
Atmos. Chem. Phys., 25, 5371–5385, https://doi.org/10.5194/acp-25-5371-2025,https://doi.org/10.5194/acp-25-5371-2025, 2025
Short summary
SO2 emissions derived from TROPOMI observations over India using a flux-divergence method with variable lifetimes
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Atmos. Chem. Phys., 25, 1851–1868, https://doi.org/10.5194/acp-25-1851-2025,https://doi.org/10.5194/acp-25-1851-2025, 2025
Short summary
Evaluation of the WRF-Chem performance for the air pollutants over the United Arab Emirates
Yesobu Yarragunta, Diana Francis, Ricardo Fonseca, and Narendra Nelli
Atmos. Chem. Phys., 25, 1685–1709, https://doi.org/10.5194/acp-25-1685-2025,https://doi.org/10.5194/acp-25-1685-2025, 2025
Short summary

Cited articles

Buehler, S., Kuvatov, M., John, V., Milz, M., Soden, B., Jackson, D., and Notholt, J.: An upper tropospheric humidity data set from operational satellite microwave data, J. Geophys. Res., 113, D14110, https://doi.org/10.1029/2007JD009314, 2008.
Chen, R., Cao, C., and Menzel, W.: Intersatellite calibration of NOAA HIRS CO2 channels for climate studies, J. Geophys. Res., 118, 5190–5203, https://doi.org/10.1002/jgrd.50447, 2013.
Dickson, N., Gierens, K., Rogers, H., and Jones, R.: Vertical spatial scales of ice supersaturation and probability of ice supersaturated layers in low resolution profiles of relative humidity, in: Proceedings of the 2nd International Conference on Transport, Atmosphere and Climate, edited by: Sausen, R., van Velthoven, P., Brüning, C., and Blum, A., DLR Forschungsbericht 2010-10, 239–243, 2010.
Gettelman, A., Fetzer, E., Elderling, A., and Irion, F.: The global distribution of supersaturation in the upper troposphere from the Atmospheric Infrared Sounder, J. Climate, 19, 6089–6103, 2006.
Gierens, K., Kohlhepp, R., Spichtinger, P., and Schroedter-Homscheidt, M.: Ice supersaturation as seen from TOVS, Atmos. Chem. Phys., 4, 539–547, https://doi.org/10.5194/acp-4-539-2004, 2004.
Download
Share
Altmetrics
Final-revised paper
Preprint