Articles | Volume 13, issue 16
https://doi.org/10.5194/acp-13-8335-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-8335-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The cloud–aerosol–radiation (CAR) ensemble modeling system
X.-Z. Liang
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742-2425, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740-3823, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740-3823, USA
Related authors
H. He, X.-Z. Liang, H. Lei, and D. J. Wuebbles
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-26231-2014, https://doi.org/10.5194/acpd-14-26231-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
This study used a regional air quality model coupled with a regional climate model to investigate the future U.S. ozone pollution. We identified the individual contribution from emissions change, climate change, long range transport and model deficiency, and estimated the uncertainty.
H. Lei, D. J. Wuebbles, X.-Z. Liang, Z. Tao, S. Olsen, R. Artz, X. Ren, and M. Cohen
Atmos. Chem. Phys., 14, 783–795, https://doi.org/10.5194/acp-14-783-2014, https://doi.org/10.5194/acp-14-783-2014, 2014
H. Lei, X.-Z. Liang, D. J. Wuebbles, and Z. Tao
Atmos. Chem. Phys., 13, 10807–10825, https://doi.org/10.5194/acp-13-10807-2013, https://doi.org/10.5194/acp-13-10807-2013, 2013
H. He, X.-Z. Liang, H. Lei, and D. J. Wuebbles
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-26231-2014, https://doi.org/10.5194/acpd-14-26231-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
This study used a regional air quality model coupled with a regional climate model to investigate the future U.S. ozone pollution. We identified the individual contribution from emissions change, climate change, long range transport and model deficiency, and estimated the uncertainty.
H. Lei, D. J. Wuebbles, X.-Z. Liang, Z. Tao, S. Olsen, R. Artz, X. Ren, and M. Cohen
Atmos. Chem. Phys., 14, 783–795, https://doi.org/10.5194/acp-14-783-2014, https://doi.org/10.5194/acp-14-783-2014, 2014
H. Lei, X.-Z. Liang, D. J. Wuebbles, and Z. Tao
Atmos. Chem. Phys., 13, 10807–10825, https://doi.org/10.5194/acp-13-10807-2013, https://doi.org/10.5194/acp-13-10807-2013, 2013
C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, and P. Lu
Atmos. Chem. Phys., 13, 2347–2379, https://doi.org/10.5194/acp-13-2347-2013, https://doi.org/10.5194/acp-13-2347-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impacts of reductions in non-methane short-lived climate forcers on future climate extremes and the resulting population exposure risks in eastern and southern Asia
Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016
Dependence of strategic solar climate intervention on background scenario and model physics
Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign
Climate consequences of hydrogen emissions
Investigating the impact of Saharan dust aerosols on analyses and forecasts of African easterly waves by constraining aerosol effects in radiance data assimilation
Distinct surface response to black carbon aerosols
Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
Impacts of multi-layer overlap on contrail radiative forcing
Bias in CMIP6 models as compared to observed regional dimming and brightening
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
The incorporation of the Tripleclouds concept into the δ-Eddington two-stream radiation scheme: solver characterization and its application to shallow cumulus clouds
Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons
Effective radiative forcing and adjustments in CMIP6 models
Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
Accurate 3-D radiative transfer simulation of spectral solar irradiance during the total solar eclipse of 21 August 2017
Quantifying the bias of radiative heating rates in numerical weather prediction models for shallow cumulus clouds
The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering
Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
Radiative impact of an extreme Arctic biomass-burning event
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity
Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model
Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa
The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol
The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets
Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
Disk and circumsolar radiances in the presence of ice clouds
Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field
Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions
The spectral signature of cloud spatial structure in shortwave irradiance
Effects of urban agglomeration on surface-UV doses: a comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013–2015
Global and regional radiative forcing from 20 % reductions in BC, OC and SO4 – an HTAP2 multi-model study
A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia
Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model
Impact of buildings on surface solar radiation over urban Beijing
Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts
On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations
An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity
The impact of parameterising light penetration into snow on the photochemical production of NOx and OH radicals in snow
A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains
Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging
Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011
Regional climate model assessment of the urban land-surface forcing over central Europe
Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation
Summer Arctic sea ice albedo in CMIP5 models
A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada
Technical Note: Evaluating a simple parameterization of radiative shortwave forcing from surface albedo change
Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model
Yingfang Li, Zhili Wang, Yadong Lei, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 2499–2523, https://doi.org/10.5194/acp-23-2499-2023, https://doi.org/10.5194/acp-23-2499-2023, 2023
Short summary
Short summary
Since few studies have assessed the impacts of future combined reductions in aerosols, ozone, and their precursors on future climate change, we use models with an interactive representation of tropospheric aerosols and atmospheric chemistry schemes to quantify the impact of their reductions on the Asian climate. Our results suggest that their reductions will exacerbate the warming effect caused by greenhouse gases, increasing future climate extremes and associated population exposure risk.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
John T. Fasullo and Jadwiga H. Richter
Atmos. Chem. Phys., 23, 163–182, https://doi.org/10.5194/acp-23-163-2023, https://doi.org/10.5194/acp-23-163-2023, 2023
Short summary
Short summary
The continued high levels of anthropogenic greenhouse gas emissions increase the likelihood that key climate warming thresholds will be exceeded in the coming decades. Here we examine a recently proposed geoengineering approach using two recently produced climate model experiments. We find the associated latitudinal distribution of aerosol mass to exhibit substantial uncertainty, suggesting the need for significant flexibility in the location and amount of aerosol delivery, if implemented.
Youness El-Ouartassy, Irène Korsakissok, Matthieu Plu, Olivier Connan, Laurent Descamps, and Laure Raynaud
Atmos. Chem. Phys., 22, 15793–15816, https://doi.org/10.5194/acp-22-15793-2022, https://doi.org/10.5194/acp-22-15793-2022, 2022
Short summary
Short summary
This work investigates the potential value of using fine-scale meteorological ensembles to represent the inherent meteorological uncertainties in atmospheric dispersion model outputs. Probabilistic scores were used to evaluate the probabilistic performance of dispersion ensembles, using an original dataset of new continuous 85Kr air concentration measurements and a well-known source term. The results show that the ensemble dispersion simulations perform better than deterministic ones.
Ilissa B. Ocko and Steven P. Hamburg
Atmos. Chem. Phys., 22, 9349–9368, https://doi.org/10.5194/acp-22-9349-2022, https://doi.org/10.5194/acp-22-9349-2022, 2022
Short summary
Short summary
Hydrogen is considered a key strategy to decarbonize the global economy. However, hydrogen is also a short-lived indirect greenhouse gas that can easily leak into the atmosphere. Given that the climate impacts from hydrogen emissions are not well understood, especially in the near term, we assess impacts over all timescales for plausible emissions rates. We find that hydrogen leakage can cause more warming than widely perceived; thus, attention is needed to minimize emissions.
Dustin Francis Phillip Grogan, Cheng-Hsuan Lu, Shih-Wei Wei, and Sheng-Po Chen
Atmos. Chem. Phys., 22, 2385–2398, https://doi.org/10.5194/acp-22-2385-2022, https://doi.org/10.5194/acp-22-2385-2022, 2022
Short summary
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Jiaojiao Liu and Xiangjun Shi
Atmos. Chem. Phys., 21, 10609–10624, https://doi.org/10.5194/acp-21-10609-2021, https://doi.org/10.5194/acp-21-10609-2021, 2021
Short summary
Short summary
Cirrus thinning, which reduces the warming effect of cirrus clouds, has been investigated as a new geoengineering approach. In this study, a flexible seeding method is used to exploit the potential cooling effect of cirrus thinning. Simulation results show that the seeding method is essential for estimating the cooling effect. Cirrus thinning with the flexible seeding method could produce a considerable cooling effect, which is much stronger than the fixed seeding method.
Inés Sanz-Morère, Sebastian D. Eastham, Florian Allroggen, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 21, 1649–1681, https://doi.org/10.5194/acp-21-1649-2021, https://doi.org/10.5194/acp-21-1649-2021, 2021
Short summary
Short summary
Contrails cause ~50 % of aviation climate impacts, but this is highly uncertain. This is partly due to the effect of overlap between contrails and other cloud layers. We developed a model to quantify this effect, finding that overlap with natural clouds increased contrails' radiative forcing in 2015. This suggests that cloud avoidance may help in reducing aviation's climate impacts. We also find that contrail–contrail overlap reduces impacts by ~3 %, increasing non-linearly with optical depth.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020, https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 20, 10733–10755, https://doi.org/10.5194/acp-20-10733-2020, https://doi.org/10.5194/acp-20-10733-2020, 2020
Short summary
Short summary
Unresolved interaction between clouds and atmospheric radiation is a source of uncertainty in weather and climate models. The present study highlights the potential of the state-of-the-art Tripleclouds radiative solver for shallow cumulus clouds, exposing the significance of properly representing subgrid cloud horizontal heterogeneity. The Tripleclouds concept was thereby incorporated in the widely employed δ-Eddington two-stream radiation scheme within the comprehensive libRadtran library.
Allison B. Marquardt Collow, Mark A. Miller, Lynne C. Trabachino, Michael P. Jensen, and Meng Wang
Atmos. Chem. Phys., 20, 10073–10090, https://doi.org/10.5194/acp-20-10073-2020, https://doi.org/10.5194/acp-20-10073-2020, 2020
Short summary
Short summary
Uncertainties in marine boundary layer clouds arise in the presence of biomass burning aerosol, as is the case over the southeast Atlantic Ocean. Heating due to this aerosol has the potential to alter the thermodynamic profile as the aerosol is transported across the Atlantic Ocean. Radiation transfer experiments indicate local shortwave aerosol heating is ~2–8 K d−1; however uncertainties in this quantity exist due to the single-scattering albedo and back trajectories of the aerosol plume.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Camilla W. Stjern, Gregory Faluvegi, and Bjørn H. Samset
Atmos. Chem. Phys., 20, 8251–8266, https://doi.org/10.5194/acp-20-8251-2020, https://doi.org/10.5194/acp-20-8251-2020, 2020
Short summary
Short summary
By using climate simulations, we found that both CO2 and black carbon aerosols could reduce low-level cloud cover, which is mainly due to changes in relative humidity, cloud water, dynamics, and stability. Because the impact of cloud on solar radiation is in effect only during daytime, such cloud reduction could enhance solar heating, thereby raising the daily maximum temperature by 10–50 %, varying by region, which has great implications for extreme climate events and socioeconomic activity.
Tobias Donth, Evelyn Jäkel, André Ehrlich, Bernd Heinold, Jacob Schacht, Andreas Herber, Marco Zanatta, and Manfred Wendisch
Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020, https://doi.org/10.5194/acp-20-8139-2020, 2020
Short summary
Short summary
Solar radiative effects of Arctic black carbon (BC) particles (suspended in the atmosphere and in the surface snowpack) were quantified under cloudless and cloudy conditions. An atmospheric and a snow radiative transfer model were coupled to account for radiative interactions between both compartments. It was found that (i) the warming effect of BC in the snowpack overcompensates for the atmospheric BC cooling effect, and (ii) clouds tend to reduce the atmospheric BC cooling and snow BC warming.
Paul Ockenfuß, Claudia Emde, Bernhard Mayer, and Germar Bernhard
Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, https://doi.org/10.5194/acp-20-1961-2020, 2020
Short summary
Short summary
We model solar radiation as it would be measured on the Earth's surface in the core shadow of a total solar eclipse. Subsequently, we compare our results to observations during the total eclipse 2017 for ultraviolet, visible and near-infrared wavelengths. Moreover, we analyze the effect of the surface reflectance, the ozone profile, aerosol and the topography and give a visualization of the prevailing photons paths in the atmosphere during the eclipse.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 19, 8083–8100, https://doi.org/10.5194/acp-19-8083-2019, https://doi.org/10.5194/acp-19-8083-2019, 2019
Short summary
Short summary
The interaction between radiation and clouds represents a source of uncertainty in numerical weather prediction (NWP), due to both intrinsic problems of one-dimensional radiation schemes and poor representation of clouds. The underlying question addressed in this study is how large the bias is of radiative heating rates in NWP models for shallow cumulus clouds and how it scales with various parameters, such as solar zenith angle, surface albedo, cloud cover and liquid water path.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Rick D. Russotto and Thomas P. Ackerman
Atmos. Chem. Phys., 18, 11905–11925, https://doi.org/10.5194/acp-18-11905-2018, https://doi.org/10.5194/acp-18-11905-2018, 2018
Short summary
Short summary
In simulations with different climate models in which the strength of the Sun is reduced to cancel the surface warming from a quadrupling of atmospheric carbon dioxide, low cloud cover decreases, high cloud cover increases, the upper troposphere and stratosphere cool, and water vapor concentration decreases. The stratospheric cooling and low cloud reduction result in more sunlight reduction being needed than originally thought.
Justyna Lisok, Anna Rozwadowska, Jesper G. Pedersen, Krzysztof M. Markowicz, Christoph Ritter, Jacek W. Kaminski, Joanna Struzewska, Mauro Mazzola, Roberto Udisti, Silvia Becagli, and Izabela Gorecka
Atmos. Chem. Phys., 18, 8829–8848, https://doi.org/10.5194/acp-18-8829-2018, https://doi.org/10.5194/acp-18-8829-2018, 2018
Short summary
Short summary
The aim of the presented study was to investigate the impact on the radiation budget and atmospheric dynamics of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. We found that the smoke plume may significantly alter radiative properties of the atmosphere. Furthermore, the simulations of atmospheric dynamics indicated a vertical positive displacement and broadening of the plume with time.
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018, https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Short summary
A numerical model also used for operational weather forecast was applied to investigate the impact of contrails and contrail cirrus on the radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enables the model to simulate high clouds that are otherwise missing. In a case study, we find that the effect of these extra clouds is to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Jake J. Gristey, J. Christine Chiu, Robert J. Gurney, Cyril J. Morcrette, Peter G. Hill, Jacqueline E. Russell, and Helen E. Brindley
Atmos. Chem. Phys., 18, 5129–5145, https://doi.org/10.5194/acp-18-5129-2018, https://doi.org/10.5194/acp-18-5129-2018, 2018
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Netsanet K. Alamirew, Martin C. Todd, Claire L. Ryder, John H. Marsham, and Yi Wang
Atmos. Chem. Phys., 18, 1241–1262, https://doi.org/10.5194/acp-18-1241-2018, https://doi.org/10.5194/acp-18-1241-2018, 2018
Short summary
Short summary
This paper quantifies the radiative effects of dust and water vapour in the Saharan heat low. Dust has a warming effect at the top of the atmosphere while cooling the surface. Water vapour has a warming effect both at the top of atmosphere and the surface. We find dust and water vapour have similar effects in driving the variability in the top-of-atmosphere radiative budget, while dust has a stronger effect than water vapour in controlling day-to-day variability of the surface radiative budget.
Fabian Jakub and Bernhard Mayer
Atmos. Chem. Phys., 17, 13317–13327, https://doi.org/10.5194/acp-17-13317-2017, https://doi.org/10.5194/acp-17-13317-2017, 2017
Short summary
Short summary
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle.
Guadalupe Sanchez, Antonio Serrano, and María Luisa Cancillo
Atmos. Chem. Phys., 17, 12697–12708, https://doi.org/10.5194/acp-17-12697-2017, https://doi.org/10.5194/acp-17-12697-2017, 2017
Short summary
Short summary
This study proposes models to estimate the UVER diffuse irradiance, which means, at least, 40 % of the ultraviolet solar radiation reaching the Earth's surface at mid-latitudes. These models are inspired by expressions originally used to estimate total diffuse fraction and rely on variables commonly available to favor their applicability. The best model in this paper performs better than previous approaches and no additional information about the cloud or aerosol layer is needed.
Päivi Haapanala, Petri Räisänen, Greg M. McFarquhar, Jussi Tiira, Andreas Macke, Michael Kahnert, John DeVore, and Timo Nousiainen
Atmos. Chem. Phys., 17, 6865–6882, https://doi.org/10.5194/acp-17-6865-2017, https://doi.org/10.5194/acp-17-6865-2017, 2017
Short summary
Short summary
The dependence of solar-disk and circumsolar radiances on ice cloud
properties is studied with a Monte Carlo radiative transfer model. Ice
crystal roughness (or more generally, non-ideality) is found to be the
most important parameter influencing the circumsolar radiance, and ice
crystal sizes and shapes also play significant roles. When comparing
with radiances measured with the SAM instrument, rough ice crystals
reproduce the measurements better than idealized smooth ice crystals do.
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Nicolas Bellouin, Laura Baker, Øivind Hodnebrog, Dirk Olivié, Ribu Cherian, Claire Macintosh, Bjørn Samset, Anna Esteve, Borgar Aamaas, Johannes Quaas, and Gunnar Myhre
Atmos. Chem. Phys., 16, 13885–13910, https://doi.org/10.5194/acp-16-13885-2016, https://doi.org/10.5194/acp-16-13885-2016, 2016
Short summary
Short summary
This study uses global climate models to quantify how strongly man-made emissions of selected pollutants modify the energy budget of the Earth. The pollutants studied interact directly and indirectly with sunlight and terrestrial radiation and remain a relatively short time in the atmosphere, leading to regional and seasonal variations in their impacts. This new data set is useful to compare the potential climate impacts of different pollutants in support of policies to reduce climate change.
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791–13806, https://doi.org/10.5194/acp-16-13791-2016, https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
Short summary
The radiative effects of spatially complex cloud fields are notoriously difficult to estimate and are afflicted with errors up to ±50 % of the incident solar radiation. We find that horizontal photon transport, the leading cause for these three-dimensional effects, manifests itself through a spectral fingerprint – a new observable that holds promise for reducing the errors associated with spatial complexity by moving the problem to the spectral dimension.
Agnieszka E. Czerwińska, Janusz W. Krzyścin, Janusz Jarosławski, and Michał Posyniak
Atmos. Chem. Phys., 16, 13641–13651, https://doi.org/10.5194/acp-16-13641-2016, https://doi.org/10.5194/acp-16-13641-2016, 2016
Short summary
Short summary
This article presents a comparison between the two surface-UV dose series, measured with Brewer spectrophotometers working simultaneously at two different sites in Poland: in a large city agglomeration and in the suburbs. We consider whether the city of Warsaw acts as a shield from ultraviolet overexposure. Our study proves that the UV level in Warsaw is slightly lower than that found in cleaner suburbs of the city.
Camilla Weum Stjern, Bjørn Hallvard Samset, Gunnar Myhre, Huisheng Bian, Mian Chin, Yanko Davila, Frank Dentener, Louisa Emmons, Johannes Flemming, Amund Søvde Haslerud, Daven Henze, Jan Eiof Jonson, Tom Kucsera, Marianne Tronstad Lund, Michael Schulz, Kengo Sudo, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 16, 13579–13599, https://doi.org/10.5194/acp-16-13579-2016, https://doi.org/10.5194/acp-16-13579-2016, 2016
Short summary
Short summary
Air pollution can reach distant regions through intercontinental transport. Here we first present results from the Hemispheric Transport of Air Pollution Phase 2 exercise, where many models performed the same set of coordinated emission-reduction experiments. We find that mitigations have considerable extra-regional effects, and show that this is particularly true for black carbon emissions, as long-range transport elevates aerosols to higher levels where their radiative influence is stronger.
Nataly Chubarova, Yekaterina Zhdanova, and Yelena Nezval
Atmos. Chem. Phys., 16, 11867–11881, https://doi.org/10.5194/acp-16-11867-2016, https://doi.org/10.5194/acp-16-11867-2016, 2016
Short summary
Short summary
Biologically active ultraviolet (UV) radiation is an important environmental factor, which affect human health and nature. UV radiation has a significant increase with the altitude. We propose a new method for calculating the altitude UV dependence for different types of biologically active UV radiation. The proposed method was implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia. The possible UV effects on human health were considered over Alpine zone.
Alex Montornès, Bernat Codina, John W. Zack, and Yolanda Sola
Atmos. Chem. Phys., 16, 5949–5967, https://doi.org/10.5194/acp-16-5949-2016, https://doi.org/10.5194/acp-16-5949-2016, 2016
Short summary
Short summary
This paper documents a new package for the Weather Research and Forecasting--Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950–2050 and is also extensible to a longer period. First, a description of the implementation together with a validation for the period 1950–2050 of all solar eclipse trajectories is presented. Second, the model response is analyzed in four total solar eclipse episodes. Global horizontal irradiance (GHI) outcomes are validated with respect to ground-based measurements.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
Thomas Schmidt, John Kalisch, Elke Lorenz, and Detlev Heinemann
Atmos. Chem. Phys., 16, 3399–3412, https://doi.org/10.5194/acp-16-3399-2016, https://doi.org/10.5194/acp-16-3399-2016, 2016
Short summary
Short summary
We performed an irradiance forecast experiment based on analysis of
hemispheric sky images and evaluated results on a large data set of 99
pyranometers distributed over 10 × 12 km. We developed a surface
irradiance retrieval from cloud information derived from the images.
Very high resolution forecasts were processed up to 25 min. A main
finding is that forecast skill is enhanced in complex cloud conditions
leading to high variability in surface irradiance.
G. Alexandri, A. K. Georgoulias, P. Zanis, E. Katragkou, A. Tsikerdekis, K. Kourtidis, and C. Meleti
Atmos. Chem. Phys., 15, 13195–13216, https://doi.org/10.5194/acp-15-13195-2015, https://doi.org/10.5194/acp-15-13195-2015, 2015
Short summary
Short summary
It is shown here that RegCM4 regional climate model adequately simulates surface solar radiation (SSR) over Europe but significantly over/underestimates several parameters that determine the transmission of solar radiation in the atmosphere. The agreement between RegCM4 and satellite-based SSR observations is actually a result of the conflicting effect of these parameters. We suggest that there should be a reassessment of the way these parameters are represented within this and other models.
M. E. Nicholls
Atmos. Chem. Phys., 15, 9003–9029, https://doi.org/10.5194/acp-15-9003-2015, https://doi.org/10.5194/acp-15-9003-2015, 2015
H. G. Chan, M. D. King, and M. M. Frey
Atmos. Chem. Phys., 15, 7913–7927, https://doi.org/10.5194/acp-15-7913-2015, https://doi.org/10.5194/acp-15-7913-2015, 2015
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary
Short summary
This paper investigates 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (CAM4/CLM4) with a 0.23°×0.31° resolution for simulations over 6 years. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations.
C. R. MacIntosh, K. P. Shine, and W. J. Collins
Atmos. Chem. Phys., 15, 3957–3969, https://doi.org/10.5194/acp-15-3957-2015, https://doi.org/10.5194/acp-15-3957-2015, 2015
Short summary
Short summary
This study examines quantitatively the impact of methodological choices, in particular of averaging of multi-model ensembles, on climate metrics for ozone precursors.
Estimates of the standard deviation of radiative forcing (RF), global warming and temperature potential (GWP, GTP) from ensemble-mean input fields generally overestimate the true value.
The multi-model average fields are appropriate for calculating mean metrics, but are not a reliable method for calculating the uncertainty.
R. Román, J. Bilbao, and A. de Miguel
Atmos. Chem. Phys., 15, 375–391, https://doi.org/10.5194/acp-15-375-2015, https://doi.org/10.5194/acp-15-375-2015, 2015
Short summary
Short summary
This paper develops two models for the reconstruction of ultraviolet erythemal radiation (UVER). The models are based on shortwave radiation (SW) and sunshine duration measurements. Both models are used to reconstruct UVER irradiation at nine Spanish places from 1950 to 2011. The trends of UVER are calculated at different periods. UVER presented a brightening phenomenon, but not dimming, due to the ozone depletion until the mid-1990s.
P. Huszar, T. Halenka, M. Belda, M. Zak, K. Sindelarova, and J. Miksovsky
Atmos. Chem. Phys., 14, 12393–12413, https://doi.org/10.5194/acp-14-12393-2014, https://doi.org/10.5194/acp-14-12393-2014, 2014
Short summary
Short summary
The impact of cities and urban surfaces on climate of central Europe is examined using a regional climate model coupled to a single-layer urban canopy model. Results show a significant impact on temperature (up to 1.5K increase in summer), the boundary layer height, surface wind with a winter decrease and precipitation (a summer decrease). Applying the urban canopy model, the regional climate model exhibits a decreased model bias when compared to observations.
T. Fauchez, C. Cornet, F Szczap, P. Dubuisson, and T. Rosambert
Atmos. Chem. Phys., 14, 5599–5615, https://doi.org/10.5194/acp-14-5599-2014, https://doi.org/10.5194/acp-14-5599-2014, 2014
T. Koenigk, A. Devasthale, and K.-G. Karlsson
Atmos. Chem. Phys., 14, 1987–1998, https://doi.org/10.5194/acp-14-1987-2014, https://doi.org/10.5194/acp-14-1987-2014, 2014
K. N. Liou, Y. Gu, L. R. Leung, W. L. Lee, and R. G. Fovell
Atmos. Chem. Phys., 13, 11709–11721, https://doi.org/10.5194/acp-13-11709-2013, https://doi.org/10.5194/acp-13-11709-2013, 2013
R. M. Bright and M. M. Kvalevåg
Atmos. Chem. Phys., 13, 11169–11174, https://doi.org/10.5194/acp-13-11169-2013, https://doi.org/10.5194/acp-13-11169-2013, 2013
L. Zhang, Q. B. Li, Y. Gu, K. N. Liou, and B. Meland
Atmos. Chem. Phys., 13, 7097–7114, https://doi.org/10.5194/acp-13-7097-2013, https://doi.org/10.5194/acp-13-7097-2013, 2013
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A Parameterization of aerosol activation 3, Sectional representation, J. Geophy. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Astin, I. and Di Girolamo, L.: The relationship between α and the cross-correlation of cloud fraction, Quart. J. Roy. Metero. Soc., 132, 2475–2478, 2006.
Barker, H. W., Pincus, R., and Morcrette, J.-J.: The Monte-Carlo Independent Column Approximation: Application within large-scale models. Paper presented at GCSS/ARM Workshop on the Representation of Cloud Systems in Large-Scale Models, Kananaskis, Al, Canada, 2002.
Barker, H. W., Stephens, G. L., Partain, P. T., Bergman, J. W., Bonnel, B., Campana, K., Clothiaux, E. E., Clough, S., Cusack, S., Delamere, J., Edwards, J., Evans, K. F., Fouquart, Y., Freidenreich, S., Galin, V., Hou, Y., Kato, S., Li, J., Mlawer, E., Morcrette, J.J., O'Hirok, W., Räisänen, P., Ramaswamy, V., Ritter, B., Rozanov, E., Schlesinger, M., Shibata, K., Sporyshev, P., Sun, Z., Wendisch, M., Wood, N., and Yang, F.: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds, J. Climate, 16, 2676–2699, 2003.
Bauer, S. E. and Menon, S.: Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions, J. Geophys. Res., 117, D01206, https://doi.org/10.1029/2011JD016816, 2012.
Berger, A., Loutre, M., and Tricot, C.: Insolation and Earth's orbital periods, J. Geophys. Res., 98, 10341–10362, 1993.
Bergman, J. W. and Rasch, P. J.: Parameterizing vertically-coherent cloud distributions, J. Atmos. Sci., 59, 2165–2182, 2002.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, 2006.
Briegleb, B. P.: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model, J. Geophys. Res., 97, 7603–7612, 1992.
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J. B.: The albedo of fractal stratocumulus clouds, J. Atmos. Sci., 51, 2434–2455, 1994.
Cairns, B., Lacis, A. A., and Carlson, B. E.: Absorption within inhomogeneous clouds and its parameterization in general circulation models, J. Atmos. Sci., 57, 700–714, 2000.
Cash, B. A., Schneider, E. K., and Bengtsson, L.: Origin of climate sensitivity differences: role of selected radiative processes in two GCMs, Tellus A, 59, 155–169, 2007.
Cess, R. D., Zhang, M. H., Ingram, W. J., Potter, G. L., Alekseev, V., Barker, H. W., Cohen-Solal, E., Colman, R. A., Dazlich, D. A., Del Genio, A. D., Dix, M. R., Dymnikov, V., Esch, M., Fowler, L. D., Fraser, J. R., Galin, V., Gates, W. L., Hack, J. J., Kiehl, J. T., Le Treut, H., Lo, K. K. W., McAvaney, B. J., Meleshko, V. P., Morcrette, J. J., Randall, D. A., Roeckner, E., Royer, J. F., Schlesinger, M. E., Sporyshev, P. V., Timbal, B., Volodin, E. M., Taylor, K. E., Wang, W., and Wetherald, R. T.: Cloud feedback in atmosphere general circulation models: an update, J. Geophys. Res., 101, 12791–12794, 1996.
Chou, M.-D. and Suarez, M. J.: A solar radiation parameterization for atmospheric studies, [Last revision on March 2002] Technical Report Series on Global Modeling and Data Assimilation, edited by: Suarez, M. J., NASA/TM-1999-104606, Vol. 15, Goddard Space Flight Center, Greenbelt, MD, 42 pp., 1999.
Chou, M.-D., Suarez, M. J., Ho, C.-H., Yan, M. M.-H., and Lee, K.-T.: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models, J. Climate, 11, 202–214, 1998.
Chou, M.-D., Suarez, M. J., Liang, X.-Z., and Yan, M. M.-H.: A thermal infrared radiation parameterization for atmospheric studies, [Last revision on July 2002] Technical Report Series on Global Modeling and Data Assimilation, edited by: Suarez, M. J., NASA/TM-2001-104606, Vol. 19, Goddard Space Flight Center, Greenbelt, MD, 56 pp., 2001.
Chu, D.A., Kaufman, Y.J., Ichoku, C., Remer, L. A., Tanre, D., and Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, 8007, https://doi.org/10.1029/2001GL013205, 2002.
Chuang, C. C., Penner, J. E., Prospero, J. M., Grant, K. E., Rau, G. H., and Kawamoto, K.: Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations, J. Geophy. Res., 107, 4564, https://doi.org/10.1029/ 2000JD000215, 2002.
Clough, S. A., Iacono, M. J., and Moncet, J.-L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15761–15785, 1992.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244, 2005.
Collins, W. D.: Parameterization of generalized cloud overlap for radiative calculations in general circulation models, J. Atmos. Sci., 58, 3224–3242, 2001.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., and Dai, Y.: Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note, NCAR/TN-464+STR, 226 pp., 2004.
Collins, W. D., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W., Fu, Q., Casanova, S. E. B., Dufresne, J.-L., Fillmore, D. W., Forster, P. M. D., Galin, V. Y., Gohar, L. K., Ingram, W. J., Kratz, D. P., Lefebvre, M.-P., Li, J., Marquet, P., Oinas, V., Tsushima, Y., Uchiyama, T., and Zhong, W. Y.: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713, 2006.
Cox, S. J., Stackhouse, P. W. Jr., Gupta, S. K., Mikovitz, J. C., Chiacchio, M., and Zhang, T.: The NASA/GEWEX Surface Radiation Budget Project: Results and analysis. In IRS 2004: Current Problems in Atmospheric Radiation, paper presented at the International Radiation Symposium, Busan, Korea, edited by: Fischer, H. and Soon, B.-J., Deepak, A., Publishing, 419 pp., 2004.
Di Girolamo, L. and Davies, R.: The image navigation cloud mask for the Multi-angle Imaging SpectroRadiometer (MISR),. J. Atmos. Oceanic Tech., 12, 1215–1228, 1995.
Del Genio, A. D., Wolf, A. B., and Yao, M.-S.: Evaluation of regional cloud feedbacks using single-column models, J. Geophys. Res., 110, D15S13, https://doi.org/10.1029/2004JD005011, 2005.
Dobbie, J., Li, J., and Chýlek, P.: Two- and four-stream optical properties for water clouds and solar wavelengths, J. Geophys. Res., 104, 2067–2079, 1999.
Ebert, E. E. and Curry, J. A.: A parameterization of cirrus cloud optical properties for climate models, J. Geophys. Res., 97, 3831–3836, 1992.
Edwards, J. M., Havemann, S., Thelen, J. C., and Baran, A. J.: Parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM, Atmos. Res., 83, 19–35, 2007.
Ellingson, R. G., Ellis, J., and Fels, S.: The intercomparison of radiation codes used in climate models: Long wave results, J. Geophys. Res., 96, 8929–8953, 1991.
Ferrier, B. S., Lin, Y., Black, T., Rogers, E., and DiMego, G.: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP ETA model, Preprints at 15th Conference on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283, 2002.
Flanner, M., Zender, C., Randerson, J., and Rasch, P.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006 JD008003, 2007.
Fouquart, Y., Bonnel, B., and Ramaswamy, V.: Intercomparing shortwave radiation codes for climate studies, J. Geophys. Res., 96, 8955–8968, 1991.
Freidenreich, S. M. and Ramaswamy, V.: A new multiple-band solar radiative parameterization for general circulation models, J. Geophys. Res., 104, 31389–31409, 1999.
Fu, Q. and Liou, K.N.: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156, 1992.
Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., and Grossman, A.: Multiple scattering parameterization in thermal infrared radiative transfer, J. Atmos. Sci., 54, 2799–2812, 1997.
Fu, Q., Yang, P., and Sun, W. B.: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models, J. Climate, 11, 2223–2237, 1998.
Geleyn, J.-F. and Hollingsworth, A.: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation, J. Atmos. Phys., 52, 1–16, 1979.
Gu, Y., Liou, K. N., Ou, S. C., and Fovell, R.: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res., 116, D06119, https://doi.org/10.1029/2010JD014574, 2011.
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bull. Amer. Meteor. Soc., 79, 831–844, 1998.
Hogan, R. J. and Illingworth, A.J.: Deriving cloud overlap statistics from radar, Q. J. R. Meteorol. Soc., 126, 2903–2909, 2000.
Hu, Y. X. and Stamnes, K.: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 6, 728–742, 1993.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.29/2008JD009944, 2008.
Ichikawa, H., Masunaga, H., Tsushima, Y., and Kanzawa, H.: Reproducibility by climate models of cloud radiative forcing associated with tropical convection, J. Climate, 25, 1247–1262, 2012.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: The Physical Science Basis, Solomon S., Qin D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H.L. Jr., and Chen, Z., Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press, New York, 2007.
Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A., and Holben, B.: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations, J. Geophys. Res., 110, D10S04, https://doi.org/10.29/2004JD004706, 2005.
Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., Martonchik, J. V., and Levy, R. C.: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res., 112, D18205, https://doi.org/10.29/2006JD008175, 2007.
Kay, J., Hillman, B., Klein, S., Zhang, Y., Medeiros, B., Pincus, R., Gettelman, A., Eaton, B., Boyle, J., Marchand, R., and Ackerman, T.: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Climate, 25, 5190–5207, 2012.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L., and Rasch, P. J.: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note, NCAR/TN-420+STR, 143 pp., 1996.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. J.: The National Center for Atmospheric Research Community Climate Model: CCM3, J. Climate, 11, 1131–1149, 1998.
Li, J.: Accounting for unresolved clouds in a 1-D infrared radiative transfer model, Part I: Solution for radiative transfer, including cloud scattering and overlap, J. Atmos. Sci., 59, 3302–3320, 2002.
Li, J. and Barker, H. W.: A radiation algorithm with correlated-k distribution, Part I: local thermal equilibrium, J. Atmos. Sci., 62, 286–309, 2005.
Li, J. and Min, Q. L.: Note and correspondence: parameterization of the optical properties of sulfate aerosols in the infrared, J. Atmos. Sci., 59, 3130–3140, 2002.
Li, J., Wong, J. G. D., Dobbie, J. S., and Chylek, P.: Parameterization of the optical properties of sulfate aerosols, J. Atmos. Sci., 58, 193–209, 2001.
Li, J., Mlawer, E., and Chylek, P.: Parameterization of cloud optical properties for semidirect radiative forcing, J. Geophys. Res., 116, D23212, https://doi.org/10.1029/2011JD016611, 2011.
Li, J.-L. F., Waliser, D., Woods, C., Teixeira, J., Bacmeister, J., Chern, J., Shen, B.-W., Tompkins, A., Tao, W.-K., and Köhler, M.: Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations, Geophys. Res. Lett., 35, L19710, https://doi.org/10.1029/2008GL035427, 2008.
Li, J.-L. F., Waliser, D. E., and Jiang, J. H.: Correction to "Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations", Geophys. Res. Lett., 38, L24807, https://doi.org/10.1029/2011GL049956, 2011a.
Li, J.-L. F., Waliser, D. E., Chen, W.-T., Guan, B., Kubar, T., Stephen, G., Ma, H.-Y., Deng, M., Donner, L., Seman, C., and Horowitz, L.: An observationally-based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data, J. Geophys. Res., 117, D16105, https://doi.org/10.1029/2012JD017640, 2012.
Li, J.-L. F., Waliser, D. E., Stephens, G., Lee, S., L'Ecuyer, T., Kato, S., Loeb, N., and Ma, H.-Y.: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis, J. Geophys. Res., 118, https://doi.org/10.1002/jgrd.50378, 2013.
Liang, X.-Z. and Wang, W.-C.: Cloud overlap effects on general circulation model climate simulations, J. Geophys. Res., 102, 11039–11047, 1997.
Liang, X.-Z. and Wu, X.: Evaluation of a GCM subgrid cloud-radiation interaction parameterization using cloud-resolving model simulations, Geophys. Res. Lett., 32, L06801, https://doi.org/10.1029/2004GL022301, 2005.
Liang, X.-Z., Wang, W.-C., and Boyle, J. S.: Atmospheric ozone climatology for use in general circulation models, PCMDI Report No. 43, UCRL-MI-125650, 25 pp., 1997.
Liang, X.-Z., Xu, M., Gao, W., Kunkel, K. E., Slusser, J., Dai, Y., Min, Q., Houser, P. R., Rodell, M., Schaaf, C. B., and Gao, F.: Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data, J. Geophys. Res., 110, D11107, https://doi.org/10.1029/2004JD005579, 2005.
Liang, X.-Z., Xu, M., Choi, H.I, Kunkel, K. E., Rontu, L., Geleyn, J.-F., Müller, M. D., Joseph, E., and, Wang, J. X. L.: Development of the regional Climate-Weather Research and Forecasting model (CWRF): Treatment of subgrid topography effects, Paper presented at the 7th Annual WRF User's Workshop, Boulder, CO, 5 pp., 2006.
Liang, X.-Z., Xu, M., Yuan, X., Ling, T., Choi, H.I., Zhang, F., Chen, L., Liu, S., Su, S., Qiao, F., He, Y., Wang, J. X. L., Kunkel, K. E., Gao, W., Joseph, E., Morris, V., Yu, T.-W., Dudhia, J., and Michalakes, J.: Regional Climate-Weather Research and Forecasting Model (CWRF), Bull. Amer. Meteor. Soc., 93, 1363–1387, https://doi.org/10.1175/BAMS-D-11-00180.1, 2012.
Lindner, T. H. and Li, J.: Parameterization of the optical properties for water clouds in the infrared, J. climate, 13, 1797–1805, 2000.
Liou, K.N., Gu, Y., Yue, Q., and McFarguhar, G.: On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models, Geophys. Res. Lett., 35, L13805, https://doi.org/10.1029/2008GL033918, 2008.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Manabe, S. and Strickler, R. F.: Thermal equilibrium of the atmosphere with a convective adjustment, Journal of the Atmospheric Sciences, 21, 361–365, 1964.
Martin, G. M., Johnson, D. W., and Spice, A.: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823–1842, 1994.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP greenhouse gas concentrations and their extension from 1765 to 2500, Clim. Change, 109, 213–241, 2011.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery, E., Ek, M., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis, Bull. Amer. Meteor. Soc., 87, 343–360, 2006.
Min, Q. L., and Harrison, L. C.: Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site, Geophys. Res. Lett., 23, 1641–1644, 1996.
Ming, Y., Ramaswamy, V., Donner, L. J., and Phillips, V. T. J.: A new parameterization of cloud droplet activation applicable to general circulation models, J. Atmos. Sci., 63, 1348–1356, 2006.
Morcrette, J. J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R.: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system, Mon. Wea. Rev., 136, 4773–4798, 2008.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Müller, M. D. and Scherer, D.: A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Monthly Weather Review, 133, 1431–1442, https://doi.org/10.1175/MWR2927.1, 2005.
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768–772, 2004.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Rooijen, van S., Victor, N., and Dadi, Z.: IPCC Special Report on Emissions Scenarios. Cambridge University Press, UK, 570 pp., 2000.
Naud, C. M., Del Genio, A. D., Mace, G. G., Benson, S., Clothiaux, E. E., and Kollias, P.: Impact of dynamics and atmospheric state on cloud vertical overlap, J. Climate, 21, 1758–1770, 2008.
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Marsh, D., M., Smith, A. K., Tilmes, S., Vitt, F., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical NoteNCAR/TN-486+STR, June, 268 pp., 2010.
Nenes, A. and Seinfeld, J. H.: Parameterization of cloud droplet formation in global climate models, J. Geophy. Res., 108, 4415, https://doi.org/10.1029/2002JD002911, 2003.
Oreopoulos, L., Mlawer, E., Delamere, J., Shippert, T., Cole, J., Fomin, B., Iacono, M., Jin, Z. H., Li, J. N., Manners, J., Räisänen, P., Rose, F., Zhang, Y. C., Wilson, M. J., and Rossow, W. B.: The continual intercomparison of radiation codes: results from phase I, J. Geophys. Res., 117, D06118, https://doi.org/10.1029/2011JD016821, 2012.
Pincus, R., Barker, H. W., and Morcrette, J.-J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds, J. Geophys. Res., 108D, 4376, https://doi.org/10.1029/2002JD003322, 2003.
Pincus, R., Hannay, C., and Evans, K. F.: The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments, J. Atmos. Sci., 62, 2284–2293, 2005.
Pincus, R., Batstone, C. P., Hofmann, R. J. P., Taylor, K. E., and Glecker, P. J.: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models, J. Geophys. Res., 113, D14209, https://doi.org/10.1029/2007JD009334, 2008.
Räisänen, P., Barker, H. W., Khairoutdinov, M. F., Li, J., and Randall, D. A.: Stochastic generation of subgrid-scale cloudy columns for large-scale models, Q. J. R. Meteorol. Soc,, 130, 2047–2067, 2004.
Remer, L. A., Tanré, D., Kaufman, Y.J., Ichoku, C., Mattoo, S., Levy, R., Chu, D. A., Holben, B., dubovik, O., Smirnov, A., Martins, J. V., Li, R. R., and Ahmad, Z.: Validation of MODIS aerosol retrieval over ocean, Geophys. Res. Lett., 29, 8008, https://doi.org/10.1029/2001GL013204, 2002.
Rossow, W. B., Walker, A. W., Beuschel, D. E., and Roiter, M. D.: International Satellite Cloud Climatology Project (ISCCP) Documentation of New Cloud Datasets. WMO/TD-No. 737, World Meteorological Organization, 115 pp., 1996.
Rossow, W. B., Delo, C., and Cairns, B.: Implications of the observed mesoscale variations of clouds for Earth's radiation budget, J. Climate, 15, 557–585, 2002.
Rossow, W. B., Zhang, Y. C., and Wang, J. H.: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles, J. Climate, 18, 3587–3605, 2005.
Sanderson, B. M.: A multimodel study of parametric uncertainty in predictions of climate response to rising greenhouse gas concentrations, J. Climate, 24, 1362–1377, 2011.
Savijärvi, H., Arola, A., and Räisänen, P.: Short-wave optical properties of precipitating water clouds, Quart. J. Roy. Meteorol. Soc., 123, 883–899, 1997.
Schwarzkopf, M. D. and Ramaswamy, V.: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment, J. Geophys. Res., 104, 9467–9488, 1999.
Seemann, S. W., Borbas, E. E., Knuteson, R. O., Stephenson, G. R., and Huang, H.-L.: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements, J. Appl. Meteor. Climatol., 47, 108–123, 2008.
Senkova, A. V., Rontu, L., and Savijärvi, H.: Parametrization of orographic effects on surface radiation in HIRLAM, Tellus, 59, 279–291, https://doi.org/10.1111/j.1600-0870.2007.00235.x, 2007.
Slingo, A. S.: A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 1419–1427, 1989.
Slingo, J. M.: The development and verifcation of a cloud prediction scheme for the ECMWF model, Quart. J. Roy. Meteorol. Soc., 113, 899–927, 1987.
Stackhouse, P. W. Jr., Cox, S. J., Gupta, S. K., Chiacchio, M., and Mikovitz, J. C.: The WCRP/GEWEX surface radiation budget project release 2: An assessment of surface fluxes at 1 degree resolution. Paper presented at International Radiation Symposium, St.-Petersburg, Russia, July 24–29, IRS 2000: Current Problems in Atmospheric Radiation, edited by: W. L. Smith and Y. Timofeyev, p. 147, A. Deepak Publishing, 2001.
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., and Allen, M. R.: Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, 403–406, 2005.
Stott, P. A. and Kettleborough, J. A.: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise, Nature, 416, 723–726, 2002.
Sun, Z.: Development of the Sun-Edwards-Slingo Radiation Scheme (SES2). In CAWCR Technical Report No. 009, Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology, 94 pp., 2008.
Sun, Z. A. and Rikus, L.: Parametrization of effective radius of cirrus clouds and its verification against observations, Q. J. Royal. Meteor. Soc., 125, 3037-3056, 1999.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: A Summary of the CMIP5 Experiment Design, World Climate Research Program, 32 pp., 2009.
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Phil. Trans. R. Soc. A., 3, 2053–2075, 2007.
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Wea. Rev., 121, 3040–3061, 1993.
Tompkins, A. M.: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover, J. Atmos. Sci., 59, 1917–1942, 2002.
Uppala, S.M., Dee, D.P., Kobayashi, S., Berrisford, P., and Simmons, A.J.: Towards a climate data assimilation system: Status update of ERA-Interim, ECMWF Newsletter, 115, 12–18, 2008.
Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeister, J., Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H., Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., Sun-Mack, S., Tao, W.-K., Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res., 114, D00A21, https://doi.org/10.1029/2008JD010015, 2009.
Watanabe, M., Emori, S., Satoh, M., and Miura, H.: A PDF based hybrid prognostic cloud scheme for general circulation models, Clim. Dyn., 33, 795–816, 2009.
Webb, M. J., Senior, C. A., Sexton, D. M. H., Ingram, W. J., Williams, K. D., Ringer, M. A., McAvaney, B. J., Colman, R., Soden, B. J., Gudgel, R., Knutson, T., Emori, S., Ogura, T., Tsushima, Y., Andronova, N., Li, B., Musat, I., Bony, S., and Taylor, K. E.: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles, Clim. Dynam., 27, 17–38, 2006.
Wielicki, B. A., Barkstrom, B., Harrison, E. F., Lee, R., Smith, G., and Cooper, J.: Clouds and the Earth's Radiant Energy System (CERES): An Earth observing system experiment, Bull. Am. Meteorol. Soc., 77, 853–868, 1996.
Wild, M.: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective, Geophys. Res. Lett., 32, L07704, https://doi.org/10.1029/2005GL022421, 2005.
Wild, M., Long, C. N., and Ohmura, A.: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective, J. Geophys. Res., 111, D01104, https://doi.org/10.1029/2005JD006118, 2006.
Wu, X. and Liang, X.-Z.: Radiative effects of cloud horizontal inhomogeneity and vertical overlap identified from a month-long cloud-resolving model simulation, J. Atmos. Sci., 62, 4105–4112, 2005.
Wu, X., Liang, X.-Z., and Park, S.: Cloud-resolving model simulations over the ARM SGP. Mon. Wea. Rev., 135, 2841–2853, 2007.
Xu, K.-M. and Randall, D. A.: A semiempirical cloudiness parameterization for use in climate models, J. Atmos. Sci., 53, 3084–3102, 1996.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Zhang, F., Liang, X.-Z., Li, J., and Zeng, Q.-C.: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects, J. Geophys. Res., 118, 7733–7749, 2013.
Zhang, M. H., Lin, W. Y., Klein, S. A., Bacmeister, J. T., Bony, S., Cederwall, R. T., Del Genio, A. D., Hack, J.J., Loeb, N. G., Lohmann, U., Minnis, P., Musat, I., Pincus, R., Stier, P., Suarez, M. J., Webb, M. J., Wu, J. B., Xie, S. C., Yao, M.-S., and Zhang, J. H.: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021, 2005.
Zhang, Y.-C., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I.: Calculation of radiative fluxes from the surface to top-ofatmosphere based on ISCCP and other global datasets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457, 2004.
Altmetrics
Final-revised paper
Preprint