Articles | Volume 12, issue 20
Atmos. Chem. Phys., 12, 9739–9751, 2012
https://doi.org/10.5194/acp-12-9739-2012

Special issue: The Pan European Gas-Aerosols Climate Interaction Study...

Atmos. Chem. Phys., 12, 9739–9751, 2012
https://doi.org/10.5194/acp-12-9739-2012

Research article 25 Oct 2012

Research article | 25 Oct 2012

Mapping the uncertainty in global CCN using emulation

L. A. Lee et al.

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021,https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021,https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Wildfire smoke-plume rise: a simple energy balance parameterization
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021,https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021,https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary

Cited articles

Ackerley, D., Highwood, E., Frame, D., and Booth, B.: Changes in the global sulfate burden due to perturbations in global CO2 concentrations, J. Climate, 20, 5421–5432, 2009.
Adams, P. J. and Seinfeld, J. H.: Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30, 1239, https://doi.org/10.1029/2002GL016303, 2003.
Carnell, R.: lhs: Latin Hypercube Samples, available at: http://CRAN.R-project.org/package=lhs, r package version 0.5, last access: 15 December 2011, 2008.
Chipperfield, M.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: intercomparison of stratospheric tracer experiments, Q. J. Roy. Meteorol. Soc., 132, 1179–1203, https://doi.org/10.1256/qj.05.51, 2006.
Clement, C. F. and Ford, I. J.: Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmos. Environ., 33, 489–499, 1999.
Download
Altmetrics
Final-revised paper
Preprint