Articles | Volume 12, issue 9
https://doi.org/10.5194/acp-12-4245-2012
https://doi.org/10.5194/acp-12-4245-2012
Research article
 | 
12 May 2012
Research article |  | 12 May 2012

Global risk of radioactive fallout after major nuclear reactor accidents

J. Lelieveld, D. Kunkel, and M. G. Lawrence

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024,https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024,https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024,https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024,https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024,https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary

Cited articles

Anspaugh, L. R., Catlin, R. J., and Goldman, M.: The global impact of the Chernobyl reactor accident, Science, 242, 1513–15-19, 1988.
Baklanov, A. A. and Mahura, A. G.: Assessment of possible airborne impact from risk sites: methodology for probabilistic atmospheric studies, Atmos. Chem. Phys., 4, 485–495, https://doi.org/10.5194/acp-4-485-2004, 2004.
Beresford, N. A., Mayes, R. W., Cooke, A. I., Barnett, C. L., Howard, B. J., Lamb, C. S., and Naylor, G. P. L.: The importance of source-dependent bioavailability in determining the transfer of ingested radionuclides to ruminant-derived food products, Environ. Sci. Technol., 34, 4455–4462, 2000.
Brandt, J., Christensen, J. H., and Frohn, L. M.: Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model, Atmos. Chem. Phys., 2, 397–417, https://doi.org/10.5194/acp-2-397-2002, 2002.
Burns, P. C., Ewing, R. C., and Navrotsky, A.: Nuclear fuel in a reactor accident, Science, 335, 1184–1188, 2012.
Download
Altmetrics
Final-revised paper
Preprint