Articles | Volume 11, issue 2
Atmos. Chem. Phys., 11, 767–798, 2011
https://doi.org/10.5194/acp-11-767-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: European Integrated Project on Aerosol-Cloud-Climate and Air...
Review article 26 Jan 2011
Review article | 26 Jan 2011
Atmospheric ions and nucleation: a review of observations
A. Hirsikko et al.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations
Observations on aerosol optical properties and scavenging during cloud events
Assessing the vertical structure of Arctic aerosols using balloon-borne measurements
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
Measurement report: aerosol hygroscopic properties extended to 600 nm in the urban environment
Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland
Characteristics of sub-10 nm particle emissions from in-use commercial aircraft observed at Narita International Airport
The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign
Measurement report: quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau
The electrical activity of Saharan dust as perceived from surface electric field observations
Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest
Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter
Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of the anthropogenically polluted boundary layer
Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign
Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties
African dust particles over the western Caribbean – Part I: Impact on air quality over the Yucatán Peninsula
Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method
Measurements to determine the mixing state of black carbon emitted from the 2017–2018 California wildfires and urban Los Angeles
What can we learn about urban air quality with regard to the first outbreak of the COVID-19 pandemic? A case study from central Europe
Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: implications for radiative effect
The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere
Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic
Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth
Quantifying bioaerosol concentrations in dust clouds through online UV-LIF and mass spectrometry measurements at the Cape Verde Atmospheric Observatory
New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula
Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS
The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China
From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018
Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China
Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities
Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017
Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer
Decennial time trends and diurnal patterns of particle number concentrations in a central European city between 2008 and 2018
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Drivers of cloud droplet number variability in the summertime in the southeastern United States
Roll vortices induce new particle formation bursts in the planetary boundary layer
Deposition of light-absorbing particles in glacier snow of the Sunderdhunga Valley, the southern forefront of Central Himalaya
Large-scale ion generation for precipitation of atmospheric aerosols
Aerosol light absorption and the role of extremely low volatility organic compounds
Size-resolved particle number emissions in Beijing determined from measured particle size distributions
Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes at the Baltic Sea
Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic
Absorption closure in highly aged biomass burning smoke
Aerosol pollution maps and trends over Germany with hourly data at four rural background stations from 2009 to 2018
Measurement report: Cloud Processes and the Transport of Biological Emissions Regulate Southern Ocean Particle and Cloud Condensation Nuclei Concentrations
Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing
Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N
Contrasting impacts of two types of El Niño events on winter haze days in China's Jing-Jin-Ji region
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021, https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary
Short summary
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface concentrations in southern West Africa based on in situ observations (2015–2017 period) and MODIS satellite data (2003–2019). MODIS AODs are validated using a regional network of handheld and automatic sun photometers. Satellite-derived PM2.5 shows an increasing trend during the short dry period that is possibly linked to the increase in anthropogenic emission over this area.
This article is included in the Encyclopedia of Geosciences
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
This article is included in the Encyclopedia of Geosciences
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
This article is included in the Encyclopedia of Geosciences
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
This article is included in the Encyclopedia of Geosciences
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
This article is included in the Encyclopedia of Geosciences
Krista Luoma, Jarkko V. Niemi, Minna Aurela, Pak Lun Fung, Aku Helin, Tareq Hussein, Leena Kangas, Anu Kousa, Topi Rönkkö, Hilkka Timonen, Aki Virkkula, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 1173–1189, https://doi.org/10.5194/acp-21-1173-2021, https://doi.org/10.5194/acp-21-1173-2021, 2021
Short summary
Short summary
This study combined black carbon measurements from 15 Finnish sites that represented different environments (traffic, detached housing area, urban background, and regional background). The seasonal and diurnal variations in the black carbon concentration were associated with local emissions from traffic and residential wood burning. The study observed decreasing trends in the black carbon concentration and associated them with decreases in traffic emissions.
This article is included in the Encyclopedia of Geosciences
Nobuyuki Takegawa, Yoshiko Murashima, Akihiro Fushimi, Kentaro Misawa, Yuji Fujitani, Katsumi Saitoh, and Hiromu Sakurai
Atmos. Chem. Phys., 21, 1085–1104, https://doi.org/10.5194/acp-21-1085-2021, https://doi.org/10.5194/acp-21-1085-2021, 2021
Short summary
Short summary
The characterization of particle emissions from aircraft is important for the assessment of the aviation impacts on climate and human health. We conducted field observations of aerosols near a runway at Narita International Airport in February 2018. We investigated particle number emissions from in-use commercial aircraft under real-world operating conditions, and we found the significance of sub-10 nm size ranges in take-off plumes for both total and non-volatile particles.
This article is included in the Encyclopedia of Geosciences
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
This article is included in the Encyclopedia of Geosciences
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
This article is included in the Encyclopedia of Geosciences
Vasiliki Daskalopoulou, Sotirios A. Mallios, Zbigniew Ulanowski, George Hloupis, Anna Gialitaki, Ioanna Tsikoudi, Konstantinos Tassis, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, https://doi.org/10.5194/acp-21-927-2021, 2021
Short summary
Short summary
This research highlights the detection of charged Saharan dust in Greece and provides indications of charge separation in the plumes through the first-ever co-located ground electric field measurements and sophisticated lidar observations. We provide a robust methodology for the extraction of a fair-weather proxy field used to assess the effect of lofted dust particles to the electric field and insert a realistic modelling aspect to the charge accumulation areas within electrically active dust.
This article is included in the Encyclopedia of Geosciences
Juha Sulo, Nina Sarnela, Jenni Kontkanen, Lauri Ahonen, Pauli Paasonen, Tiia Laurila, Tuija Jokinen, Juha Kangasluoma, Heikki Junninen, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 21, 695–715, https://doi.org/10.5194/acp-21-695-2021, https://doi.org/10.5194/acp-21-695-2021, 2021
Short summary
Short summary
In this study, we analyzed over 5 years of sub-3 nm particle concentrations and their precursor vapors, identifying atmoshperic vapors important to the formation of these particles in the boreal forest. We also observed seasonal differences in both particle and precursor vapor concentrations and the formation pathways of these particles. Our results confirm the importance of organic vapors in atmospheric aerosol formation and highlight key seasonal differences that require further study.
This article is included in the Encyclopedia of Geosciences
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
This article is included in the Encyclopedia of Geosciences
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
This article is included in the Encyclopedia of Geosciences
David Brus, Jani Gustafsson, Ville Vakkari, Osku Kemppinen, Gijs de Boer, and Anne Hirsikko
Atmos. Chem. Phys., 21, 517–533, https://doi.org/10.5194/acp-21-517-2021, https://doi.org/10.5194/acp-21-517-2021, 2021
Short summary
Short summary
This paper summarizes Finnish Meteorological Institute and Kansas State University unmanned aerial vehicle measurements during the summer 2018 Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) campaign in the San Luis Valley, providing an overview of the rotorcraft deployed, payloads, scientific goals and flight strategies and presenting observations of atmospheric thermodynamics and aerosol and gas parameters in the vertical column.
This article is included in the Encyclopedia of Geosciences
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
This article is included in the Encyclopedia of Geosciences
Carolina Ramírez-Romero, Alejandro Jaramillo, María F. Córdoba, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Jong Sung Kim, Jacqueline Yakobi-Hancock, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 239–253, https://doi.org/10.5194/acp-21-239-2021, https://doi.org/10.5194/acp-21-239-2021, 2021
Short summary
Short summary
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn Peninsula. Aerosol particles were monitored at ground level by different online and off-line sensors. Several particulate matter peaks were observed with a relative increase in their levels of up to 500 % with respect to background conditions. Based on the chemical composition, back trajectories, vertical profiles, reanalysis, and satellite images, it was found that the peaks are linked to African dust.
This article is included in the Encyclopedia of Geosciences
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
This article is included in the Encyclopedia of Geosciences
Joseph Ko, Trevor Krasowsky, and George Ban-Weiss
Atmos. Chem. Phys., 20, 15635–15664, https://doi.org/10.5194/acp-20-15635-2020, https://doi.org/10.5194/acp-20-15635-2020, 2020
Short summary
Short summary
Black carbon (BC) is the second strongest climate forcing pollutant in the atmosphere, after carbon dioxide. Here, we seek to understand how BC microphysical properties vary with atmospheric contexts, as these properties can influence its radiative forcing. Consistent with previous studies, we found that biomass burning BC had thicker coatings and larger core diameters than fossil fuel BC. We also present evidence to show that atmospheric aging also increases BC coating thickness.
This article is included in the Encyclopedia of Geosciences
Imre Salma, Máté Vörösmarty, András Zénó Gyöngyösi, Wanda Thén, and Tamás Weidinger
Atmos. Chem. Phys., 20, 15725–15742, https://doi.org/10.5194/acp-20-15725-2020, https://doi.org/10.5194/acp-20-15725-2020, 2020
Short summary
Short summary
Motor vehicle road traffic in Budapest was reduced by approximately 50% of its ordinary level due to COVID-19. In parallel, concentrations of most criteria air pollutants declined by 30–60%. Change rates of NO and NO2 with relative change in traffic intensity were the largest, total particle number concentration showed considerable dependency, while particulate matter mass concentrations did not appear to be related to urban traffic. Concentrations of O3 showed an increasing tendency.
This article is included in the Encyclopedia of Geosciences
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
This article is included in the Encyclopedia of Geosciences
Action Plan for the Prevention and Control of Air Pollution.
Agnieszka Kupc, Christina J. Williamson, Anna L. Hodshire, Jan Kazil, Eric Ray, T. Paul Bui, Maximilian Dollner, Karl D. Froyd, Kathryn McKain, Andrew Rollins, Gregory P. Schill, Alexander Thames, Bernadett B. Weinzierl, Jeffrey R. Pierce, and Charles A. Brock
Atmos. Chem. Phys., 20, 15037–15060, https://doi.org/10.5194/acp-20-15037-2020, https://doi.org/10.5194/acp-20-15037-2020, 2020
Short summary
Short summary
Tropical upper troposphere over the Atlantic and Pacific oceans is a major source region of new particles. These particles are associated with the outflow from deep convection. We investigate the processes that govern the formation of these particles and their initial growth and show that none of the formation schemes commonly used in global models are consistent with observations. Using newer schemes indicates that organic compounds are likely important as nucleating and initial growth agents.
This article is included in the Encyclopedia of Geosciences
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
This article is included in the Encyclopedia of Geosciences
Imre Salma, Wanda Thén, Pasi Aalto, Veli-Matti Kerminen, Anikó Kern, Zoltán Barcza, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-862, https://doi.org/10.5194/acp-2020-862, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The distribution of monthly mean nucleation frequency possessed a characteristic pattern. Its shape was compared to those of environmental variables including vegetation-derived properties. The spring maximum in the occurrence frequency often overlapped with the positive T anomaly. The link between the heat stress and the occurrence minimum in summer could not be proved, while association between the occurrence frequency and vegetation growth dynamics was clearly identified in spring.
This article is included in the Encyclopedia of Geosciences
Douglas Morrison, Ian Crawford, Nicholas Marsden, Michael Flynn, Katie Read, Luis Neves, Virginia Foot, Paul Kaye, Warren Stanley, Hugh Coe, David Topping, and Martin Gallagher
Atmos. Chem. Phys., 20, 14473–14490, https://doi.org/10.5194/acp-20-14473-2020, https://doi.org/10.5194/acp-20-14473-2020, 2020
Short summary
Short summary
We provide conservative estimates of the concentrations of bacteria within transatlantic dust clouds, originating from the African continent. We observe significant seasonal differences in the overall concentrations of particles but no seasonal variation in the ratio between bacteria and dust. With bacteria contributing to ice formation at warmer temperatures than dust, our observations should improve the accuracy of climate models.
This article is included in the Encyclopedia of Geosciences
Juan Andrés Casquero-Vera, Hassan Lyamani, Lubna Dada, Simo Hakala, Pauli Paasonen, Roberto Román, Roberto Fraile, Tuukka Petäjä, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 20, 14253–14271, https://doi.org/10.5194/acp-20-14253-2020, https://doi.org/10.5194/acp-20-14253-2020, 2020
Short summary
Short summary
New particle formation was investigated at two stations located close to each other but at different altitudes: urban and high-altitude sites. Results show that sulfuric acid is able to explain a minimal fraction contribution to the observed growth rates and point to the availability of volatile organic compounds as the main factor controlling NPF events at both sites. A closer analysis of the NPF events that were observed at high-altitude sites during a Saharan dust episode was carried out.
This article is included in the Encyclopedia of Geosciences
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
This article is included in the Encyclopedia of Geosciences
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
Short summary
This study presents the characteristics of Taklamakan dust particles derived from lidar measurements collected in the dust aerosol observation field campaign. It provides comprehensive parameters for Taklamakan dust properties and vertical distributions of Taklamakan dust. This paper also points out the importance of polluted dust which was frequently observed in the field campaign. The results contribute to improving knowledge about dust and reducing uncertainties in the climatic model.
This article is included in the Encyclopedia of Geosciences
Dominic Heslin-Rees, Maria Burgos, Hans-Christen Hansson, Radovan Krejci, Johan Ström, Peter Tunved, and Paul Zieger
Atmos. Chem. Phys., 20, 13671–13686, https://doi.org/10.5194/acp-20-13671-2020, https://doi.org/10.5194/acp-20-13671-2020, 2020
Short summary
Short summary
Aerosol particles are one important key player in the Arctic climate. Using long-term measurements of particle light scattering from an observatory on Svalbard, this study investigates the reasons behind an observed shift towards larger particles seen in the last 2 decades. We find that increases in sea spray are the most likely cause. Air masses from the south-west have increased significantly, suggestive of a potential mechanism, whilst the retreat in sea ice has a marginal influence.
This article is included in the Encyclopedia of Geosciences
Haebum Lee, Kwangyul Lee, Chris Rene Lunder, Radovan Krejci, Wenche Aas, Jiyeon Park, Ki-Tae Park, Bang Yong Lee, Young Jun Yoon, and Kihong Park
Atmos. Chem. Phys., 20, 13425–13441, https://doi.org/10.5194/acp-20-13425-2020, https://doi.org/10.5194/acp-20-13425-2020, 2020
Short summary
Short summary
New particle formation (NPF) contributes to enhance the number of particles in the ambient atmosphere, affecting local air quality and cloud condensation nuclei (CCN) concentration. This study investigated NPF characteristics in the Arctic and showed that although formation and growth rates of nanoparticles were much lower than those in continental areas, NPF occurrence frequency was comparable and marine biogenic sources played important roles in production of condensing vapors for NPF.
This article is included in the Encyclopedia of Geosciences
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
This article is included in the Encyclopedia of Geosciences
Pengguo Zhao, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou
Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, https://doi.org/10.5194/acp-20-13379-2020, 2020
Short summary
Short summary
We discussed the different aerosol effects on lightning in plateau and basin regions of Sichuan, southwestern China. In the plateau area, the aerosol concentration is low, and aerosols (via microphysical effects) inhibit the process of warm rain and stimulate convection and lightning activity. In the basin region, however, aerosols tend to show a significant radiative effect (reducing the solar radiation reaching the surface by absorbing and scattering) and inhibit the lightning.
This article is included in the Encyclopedia of Geosciences
Ying Zhu, Jia Chen, Xiao Bi, Gerrit Kuhlmann, Ka Lok Chan, Florian Dietrich, Dominik Brunner, Sheng Ye, and Mark Wenig
Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, https://doi.org/10.5194/acp-20-13241-2020, 2020
Short summary
Short summary
Average NO2 concentration of on-street mobile measurements (MMs) near the monitoring stations (MSs) was found to be considerably higher than the MSs data. The common measurement height (H) and distance (D) of the MSs result in 27 % lower average concentrations in total than the concentration of our MMs. Another 21 % difference remained after correcting the influence of the measuring H and D. This result makes our city-wide measurements for capturing the full range of concentrations necessary.
This article is included in the Encyclopedia of Geosciences
Huihui Wu, Jonathan W. Taylor, Kate Szpek, Justin M. Langridge, Paul I. Williams, Michael Flynn, James D. Allan, Steven J. Abel, Joseph Pitt, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, https://doi.org/10.5194/acp-20-12697-2020, 2020
Short summary
Short summary
Airborne measurements of highly aged biomass burning aerosols (BBAs) over the remote southeast Atlantic provide unique aerosol parameters for climate models. Our observations demonstrate the persistence of strongly absorbing BBAs across wide regions of the South Atlantic. We also found significant vertical variation in the single-scattering albedo of these BBAs, as a function of relative chemical composition and size. Aerosol properties in the marine BL are suggested to be separated from the FT.
This article is included in the Encyclopedia of Geosciences
Guangjie Zheng, Chongai Kuang, Janek Uin, Thomas Watson, and Jian Wang
Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, https://doi.org/10.5194/acp-20-12515-2020, 2020
Short summary
Short summary
Condensational growth of Aitken-mode particles is a major source of cloud condensation nuclei in the remote marine boundary layer. It has been long thought that over remote oceans, condensation growth is dominated by sulfate that derives from ocean-emitted dimethyl sulfide. In this study, we present the first long-term observational evidence that, contrary to conventional thinking, organics play an even more important role than sulfate in particle growth over remote oceans throughout the year.
This article is included in the Encyclopedia of Geosciences
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
This article is included in the Encyclopedia of Geosciences
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020, https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Short summary
Haze events in early winter in North China exhibited rapid growth after 2010, which was completely different from the slow decline observed before 2010. However, global warming and anthropogenic emissions could not explain this trend reversal well, which was puzzling. Our study found that four climate factors, exhibiting completely opposite trends before and after 2010, effectively drove the trend reversal of the haze pollution in North China.
This article is included in the Encyclopedia of Geosciences
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
This article is included in the Encyclopedia of Geosciences
Janne Lampilahti, Hanna Elina Manninen, Katri Leino, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Tuomo Nieminen, Matti Leskinen, Joonas Enroth, Marja Bister, Sergej Zilitinkevich, Juha Kangasluoma, Heikki Järvinen, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 20, 11841–11854, https://doi.org/10.5194/acp-20-11841-2020, https://doi.org/10.5194/acp-20-11841-2020, 2020
Short summary
Short summary
In this work, by using co-located airborne and ground-based measurements, we show that counter-rotating horizontal circulations in the planetary boundary layer (roll vortices) frequently enhance regional new particle formation or induce localized bursts of new particle formation. These observations can be explained by the ability of the rolls to efficiently lift low-volatile vapors emitted from the surface to the top of the boundary layer where new particle formation is more favorable.
This article is included in the Encyclopedia of Geosciences
Jonas Svensson, Johan Ström, Henri Honkonen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1059, https://doi.org/10.5194/acp-2020-1059, 2020
Preprint under review for ACP
Short summary
Short summary
Light-absorbing particles specifically affect snow melt in the Himalaya. Through measurements of the constituents in glacier snow pits from Indian Himalaya our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalaya.
This article is included in the Encyclopedia of Geosciences
Shaoxiang Ma, He Cheng, Jiacheng Li, Maoyuan Xu, Dawei Liu, and Kostya Ostrikov
Atmos. Chem. Phys., 20, 11717–11727, https://doi.org/10.5194/acp-20-11717-2020, https://doi.org/10.5194/acp-20-11717-2020, 2020
Short summary
Short summary
Our work suggests that a large corona discharge system is an efficient and possibly economically sustainable way to increase the ion density in the open air and control the precipitation of atmospheric aerosols. Once the system is installed on a mountaintop, it will generate lots of charged nuclei, which may trigger water precipitation or fog elimination within a certain region in the downwind directions.
This article is included in the Encyclopedia of Geosciences
Antonios Tasoglou, Evangelos Louvaris, Kalliopi Florou, Aikaterini Liangou, Eleni Karnezi, Christos Kaltsonoudis, Ningxin Wang, and Spyros N. Pandis
Atmos. Chem. Phys., 20, 11625–11637, https://doi.org/10.5194/acp-20-11625-2020, https://doi.org/10.5194/acp-20-11625-2020, 2020
Short summary
Short summary
A month-long set of summertime measurements in a remote area in the Mediterranean is used to quantify aerosol absorption. The measured light absorption was two or more times higher than that of fresh black carbon. The absorption enhancement due to the coating of black carbon cores by other aerosol components could explain only part of this absorption enhancement. The rest was due to brown carbon, mostly in the form of extremely low volatility organic compounds.
This article is included in the Encyclopedia of Geosciences
Jenni Kontkanen, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, Simo Hakala, Tom V. Kokkonen, Zhuohui Lin, Yongchun Liu, Yonghong Wang, Chao Yan, Tuukka Petäjä, Jingkun Jiang, Markku Kulmala, and Pauli Paasonen
Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, https://doi.org/10.5194/acp-20-11329-2020, 2020
Short summary
Short summary
To estimate the impacts of atmospheric aerosol particles on air quality, knowledge of size distributions of particles emitted from anthropogenic sources is needed. We introduce a new method for determining size-resolved particle number emissions from measured particle size distributions. We apply our method to data measured in Beijing, China. We find that particle number emissions at our site are dominated by emissions of particles smaller than 30 nm, originating mainly from traffic.
This article is included in the Encyclopedia of Geosciences
Sami Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-946, https://doi.org/10.5194/acp-2020-946, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Effects of fuel sulfur content restrictions implemented by the International Maritime Organization at the Baltic Sea, in July 2010 and January 2015, on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in the ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of the exhaust emissions of ships.
This article is included in the Encyclopedia of Geosciences
Yohei Shinozuka, Meloë S. Kacenelenbogen, Sharon P. Burton, Steven G. Howell, Paquita Zuidema, Richard A. Ferrare, Samuel E. LeBlanc, Kristina Pistone, Stephen Broccardo, Jens Redemann, K. Sebastian Schmidt, Sabrina P. Cochrane, Marta Fenn, Steffen Freitag, Amie Dobracki, Michal Segal-Rosenheimer, and Connor J. Flynn
Atmos. Chem. Phys., 20, 11275–11285, https://doi.org/10.5194/acp-20-11275-2020, https://doi.org/10.5194/acp-20-11275-2020, 2020
Short summary
Short summary
To help satellite retrieval of aerosols and studies of their radiative effects, we demonstrate that daytime aerosol optical depth over low-level clouds is similar to that in neighboring clear skies at the same heights. Based on recent airborne lidar and sun photometer observations above the southeast Atlantic, the mean AOD difference at 532 nm is between 0 and -0.01, when comparing the cloudy and clear sides of cloud edges, with each up to 20 km wide.
This article is included in the Encyclopedia of Geosciences
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
This article is included in the Encyclopedia of Geosciences
Jost Heintzenberg, Wolfram Birmili, Bryan Hellack, Gerald Spindler, Thomas Tuch, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 10967–10984, https://doi.org/10.5194/acp-20-10967-2020, https://doi.org/10.5194/acp-20-10967-2020, 2020
Short summary
Short summary
A total of 10 years of hourly aerosol and gas data at four rural German stations have been combined with hourly back trajectories to the stations and inventories of the European Emissions Database for Global Atmospheric Research (EDGAR), yielding emission maps and trends over Germany for PM10, particle number concentrations, and equivalent black carbon (eBC). The maps reflect aerosol emissions modified with atmospheric processes during transport between sources and receptor sites.
This article is included in the Encyclopedia of Geosciences
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, Michael J. Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-731, https://doi.org/10.5194/acp-2020-731, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhances the particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
This article is included in the Encyclopedia of Geosciences
Xiaoyan Wang, Renhe Zhang, Yanke Tan, and Wei Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-912, https://doi.org/10.5194/acp-2020-912, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The physical mechanism of synoptic patterns affecting the decay process of air pollution episodes are investigate in this work. Three dominate circulation pattern are identified, which usually decrease the ambient PM2.5 concentrations by 27 %~ 41 % after they arrived around Beijing. Emission reductions led to a 4.3~5.7 μg/(m3.yr) decrease in PM2.5 concentrations around Beijing during 2014 to 2020.
This article is included in the Encyclopedia of Geosciences
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
This article is included in the Encyclopedia of Geosciences
Xiaochao Yu, Zhili Wang, Hua Zhang, Jianjun He, and Ying Li
Atmos. Chem. Phys., 20, 10279–10293, https://doi.org/10.5194/acp-20-10279-2020, https://doi.org/10.5194/acp-20-10279-2020, 2020
Short summary
Short summary
There are statistically significant positive and negative correlations, respectively, between winter haze days (WHDs) in China's Jing-Jin-Ji region and eastern Pacific and central Pacific El Niño events. These opposite changes in WHDs are attributable to the anomalies of both large-scale circulation and local synoptic conditions corresponding to two types of El Niño. Our study highlights the importance of distinguishing the impacts of two types of El Niño on winter haze pollution in this region.
This article is included in the Encyclopedia of Geosciences
Cited articles
Anttila, T., Kerminen, V.-M., and Lehtinen, K. E. J.: Parameterizing the formation rate of new particles: The effect of nuclei self-coagulation, J. Aerosol Sci., 41, 621–636, 2010.
Aplin, K. L. and Harrison, R. G.: A computer-controlled Gerdien atmospheric ion counter, Rev. Sci. Instrum., 71, 3037–3041, 2000.
Arnold, F.: Multi-ion complexes in the stratosphere-implications for trace gases and aerosol, Nature, 284, 610–611, 1980.
Arnold, F.: Ion nucleation-a potential source for stratospheric aerosols, Nature, 299, 134–135, 1982.
Arnold, F.: Atmospheric Ions and Aerosol Formation, Space Sci. Rev., 137, 225–239, 2008.
Arnold, F., Böhringer, H., and Henschen, G.: Composition measurements of stratospheric positive ions, Geophys. Res. Lett., 5, 653–656, 1978.
Asmi, E., Sipilä, M., Manninen, H.E., Vanhanen, J., Lehtipalo, K., Gagné, S., Neitola, K., Mirme, A., Mirme, S., Tamm, E., Uin, J., Komsaare, K., Attoui, M., and Kulmala, M.: Results on the first air ion spectrometer calibration and intercomparison workshop, Atmos. Chem. Phys., 9, 141–154, https://doi.org/10.5194/acp-9-141-2009, 2009.
Asmi, E., Frey, A., Virkkula, A., Ehn, M., Manninen, H. E., Timonen, H., Tolonen-Kivimäki, O., Aurela, M., Hillamo, R., and Kulmala, M.: Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation, Atmos. Chem. Phys., 10, 4253–4271, https://doi.org/10.5194/acp-10-4253-2010, 2010.
Bazilevskaya, G. A., Usoskin, I. G., Flückiger, E. O., Harrison, R. G., Desorgher, L., Bütikofer, R., Krainev, M. B., Makhmutov, V. S., Stozhkov, Y. I., Svirzhevskaya, A. K., Svirzhevsky, N. S., and Kovaltsov, G. A.: Cosmic Ray Induced Ion Production in the Atmosphere, Space Sci. Rev., 137, 149–173, 2008.
Blanchard, D. C.: Positive Space Charge from the Sea, J. Aerosol Sci., 23, 507–515, 1966.
Cadle, R. D. and Kiang, C. S.: Stratospheric Aitken particles, Rev. Geophys., 15(2), 195–202, 1977.
Chalmers, J. A.: Negative electric fields in mist and fog, J. Atmos. Terr. Phys., 2, 155–159, 1952.
Chalmers, J. A.: Atmospheric Electricity, Pergamon Press, Oxford, London, 515 pp., 1967.
Chapman, S. and Cowling, T.G.: The mathematical theory of non-uniform gases, Cambridge University Press, Cambridge, 1970.
Clarke, A. D., Kapustin, V. N., Eisele, F. L., Weber, R. J., and McMurry, P. H.: Particle Production near Marine Clouds: Sulfuric Acid and Predictions from Classical Binary Nucleation, Geophys. Res. Lett., 26(16), 2425–2428, 1999.
Coulomb, C. A.: Troisième Mémoire sur l'Electricité et le Magnétisme, Histoire de l'Académie Royale des Sciences, l'Acad`emie Royale des Sciences Paris, 612–638, 1785.
Curtius, J., Lovejoy, E. R., and Froyd, K. D.: Atmospheric ion-induced aerosol nucleation, Space Sci. Rev., 125, 159–167, 2006.
Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10, 323–336, 2005.
Dal Maso, M., Hari, P., and Kulmala, M.: Spring recovery of photosynthesis and atmospheric particle formation, Boreal Environ. Res., 14, 711–721, 2009.
Dhanorkar, S. and Kamra A. K.: Relation between electrical conductivity and small ions in the presence of intermediate and large ions in the lower atmosphere, J. Geophys. Res., 97, 20345–20360, 1992.
Dhanorkar, S. and Kamra, A. K.: Diurnal variations of the mobility spectrum of ions and size distribution of fine aerosols in the atmosphere, J. Geophys. Res., 98, 2639–2650, 1993a.
Dhanorkar, S. and Kamra, A. K.: Diurnal and seasonal variations of the small-, intermediate-, and large-ion concentrations and their contributions to polar conductivity, J. Geophys. Res., 98, 14895–14908, 1993b.
Dhanorkar, S. and Kamra, A. K.: Diurnal variation of ionization rate close to ground, J. Geophys. Res., 99, 18523–18526, 1994.
Duplissy, J., Enghoff, M. B., Aplin, K. L., Arnold, F., Aufmhoff, H., Avngaard, M., Baltensperger, U., Bondo, T., Bingham, R., Carslaw, K., Curtius, J., David, A., Fastrup, B., Gagné, S., Hahn, F., Harrison, R. G., Kellet, B., Kirkby, J., Kulmala, M., Laakso, L., Laaksonen, A., Lillestol, E., Lockwood, M., Mäkelä, J., Makhmutov, V., Marsh, N. D., Nieminen, T., Onnela, A., Pedersen, E., Pedersen, J. O. P., Polny, J., Reichl, U., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Svensmark, H., Svensmark, J., Veenhof, R., Verheggen, B., Viisanen, Y., Wagner, P. E., Wehrle, G., Weingartner, E., Wex, H., Wilhelmsson, M., and Winkler, P. M.: Results from the CERN pilot CLOUD experiment, Atmos. Chem. Phys., 10, 1635–1647, https://doi.org/10.5194/acp-10-1635-2010, 2010.
Ebert, H.: Aspirationsapparat zur Bestimmung des Ionengehalts der Atmosphäre, Phys. Z., 2, 662–664, 1901.
Ehn, M., Junninen, H., Petäjä, T., Kurtén, T., Kerminen, V.-M., Schobesberger, S., Manninen, H. E., Ortega, I. K., Vehkamäki, H., Kulmala, M., and Worsnop, D. R.: Composition and temporal behavior of ambient ions in the boreal forest, Atmos. Chem. Phys., 10, 8513–8530, https://doi.org/10.5194/acp-10-8513-2010, 2010.
Ehn, M., Junninen, H., Schobesberger, S., Manninen, H. E., Franchin, A., Sipilä, M., Petäjä, T., Kerminen, V.-M., Tammet, H., Mirme, A., Mirme, S., Hõrrak, U., Kulmala, M., and Worsnop, D. R.: An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions, Aerosol Sci. Technol., 45, 4, 522-532, 2011.
Eiceman, G. A. and Karpas, Z.: Ion Mobility Spectrometry, CRC Press, Boca Raton, FL, 2005.
Eichkorn, S., Wilhelm, S., Aufmhoff, H., Wohlfrom, K. H., and Arnold, F.: Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere, Geophys. Res. Lett., 29(14), 1698, https://doi.org/10.1029/2002GL015044, 2002.
Eichmeier, J. und Braun, W.: Beweglichkeitsspektrometrie atmosphärischer Ionen, Meteorol. Rundsch., 25, 14–19, 1972.
Eichmeier, J. A. and von Berckheim, C. Ph.: Measurement of Atmospheric-Electric Field Strength and Air-Ion Concentration at Varying Distances From the Coast With a Mobile Measuring Station, Arch. Meteor. Geophy., 28, 107–109, 1979.
Eisele, F. L.: Direct troposheric ion sampling and mass identification, Int. J. Mass Spectrom. Ion Processes, 54, 119–126, 1983.
Eisele, F. L.: Natural and atmospheric negative ions in the troposphere, J. Geophys. Res., 94, 2183–2196, 1989a.
Eisele, F. L.: Natural and transmission line produced positive ions, J. Geophys. Res., 94, 6309–6318, 1989b.
Eisele, F. L. and McMurry, P. H.: Recent progress in understanding particle nucleation and growth, Philos. T. R. Soc. Lon. B, 352, 191–201, 1997.
Eisele, F. L., Lovejoy, E. R., Koscjuch, E., Moore, K. F., Mauldin III, R. L., Smith, J. N., McMurry, P. H., and Iida, K.: Negative atmospheric ion and their potential role in ion-induced nucleation, J. Geophys. Res., 111, D04305, https://doi.org/10.1020/2005JD006568, 2006.
Elster, J. and Geitel, H.: Über die Existenz elektrischer Ionen in der Atmosphäre, Terr. Magn. Atmos. Elect., 4, 213–234, 1899.
Enghoff, M. B. and Svensmark, H.: The role of atmospheric ions in aerosol nucleation-a review, Atmos. Chem. Phys., 8, 4911–4923, https://doi.org/10.5194/acp-8-4911-2008, 2008.
Enghoff, M. B., Pedersen, J. O. P., Bondo, T., Johnson, M. S., Paling, S., and Svensmark, H.: Evidence for the Role of Ions in Aerosol Nucleation, J. Phys. Chem., 112, 10305–10309, 2008.
Erikson, H. A.: The change of mobility of the positive ions in air with age, Phys. Rev., 18, 100–101, 1921.
Faraday, M.: Experimental researches on electricity, 7th series, Phil. Trans. R. Soc. (Lond.), 124, 77–122, 1834.
Ferguson, E. E.: Sodium hydroxide ions in the stratosphere, Geophys. Res. Lett., 5, 1035–1038, 1978.
Fews, A. P., Holden, N. K., Keitch, P. A., and Henshaw, D. L.: A novel high-resolution small ion spectrometer to study ion nucleation of aerosols in ambient indoor and outdoor air, Atmos. Res., 76, 29–48, 2005.
Flagan, R. C.: History of Electrical Aerosol Measurements, Aerosol Sci. Tech., 28, 301–380, 1998.
Flagan, R. C.: Opposed Migration Aerosol Classifier (OMAC), Aerosol Sci. Tech., 38, 890–899, 2004.
Franchin, A., Siivola, E., Lehtipalo, K., Petäjä, T., and Kulmala, M.: Design and characterization of a double Gerdien ion counter, in Proceedings of the Finnish Center of Excellence and Graduate School in: Physics, Chemistry, Biology and Meteorology of Atmospheric Composition and Climate Change, annual workshop: 17–19 MAy 2010, edited by: Kulmala, M., Bäck, J.. and Nieminen, T., http://www.atm.helsinki.fi/FAAR/reportseries/rs-109/abstracts.html, 2010.
Friedlander, S. K.: Smoke, Dust and Haze, Whiley, New York, 631 pp., 1977.
Froyd, K. D. and Lovejoy, E. R.: Experimental Thermodynamics of Cluster Ions Composed of H2SO4 and H2O, 1. Positive Ions, J. Phys. Chem. A., 107, 9800–9811, 2003b.
Froyd, K. D. and Lovejoy, E. R.: Experimental Thermodynamics of Cluster Ions Composed of H2SO4 and H2O. 2, measurements and ab Initio Structures of Negative Ions, J. Phys. Chem. A., 107, 9812–9824, 2003b.
Gagné, S., Laakso, L., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland, Tellus, 60B, 318–329, 2008.
Gagné, S., Nieminen, T., Kurtén, T., Manninen, H. E., Petäjä, T., Laakso, L., Kerminen, V.-M., and Kulmala, M.: Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland, Atmos. Chem. Phys., 10, 3743–3757, https://doi.org/10.5194/acp-10-3743-2010, 2010.
Gagné, S., Lehtipalo, K., Manninen, H. E., Schobesberger, T., Franchin, A., Yli-Juuti, T., Bouloun, J., Sonntag, A., Mirme, S., Mirme, A., Hõrrak, U., Petäjä, T., Asmi, E., and Kulmala, M.: Intercomparison of air ion spectrometers: a basis for data interpretation, Atmos. Meas. Techniques., submitted, 2011.
Gerdien, H.: Die absolute Messung der elektrishen Leitfähigkeit und der spezifishen Iongeschwindigkeit in der Atmosphäre, Phys. Z., 4, 465–472, 1903.
Gerdien, H.: Demonstration eines apparates zur absolute Messung der elektrischen Leitfähigkeit der Luft, Phys. Z., 6, 800–801, 1905.
Gopalakrishnan, V., Pawar, S. D., Siingh, D., and Kamra, A. K.: Intermediate ion formation in the ship's exhaust, Geophys. Res. Lett., 32, L11806, https://doi.org/10.1029/2005GL022613, 2005.
Gupta, M., Chauhan, R. P., Garg, A., Kumar S., and Sonkawade, R.G.: Estimation of radioactivity in some sand and soil samples, Indian J. Pure Ap. Phy., 48, 482–485, 2010.
Hand, J. L. and Malm, W. C.: Review of aerosol mass scattering efficiencies from ground-based measurements since 1990, J. Geophys. Res., 112, D16203, https://doi.org/10.1029/2007JD008484, 2007.
Harrison, R. G. and Aplin, K. L.: Atmospheric condensation nuclei formation and high-energy radiation, J. Atmos. Sol.-Terr. Phy., 63, 1811–1819, 2001.
Harrison, R. G. and Aplin, K. L.: Water vapour changes and atmospheric cluster ions, Atmos. Res., 85, 199–208, 2007.
Harrison, R. G. and Carslaw, K. S.: Ion-aerosol-cloud processes in the lower atmosphere, Rev. Geophys., 41(3), 1012, https://doi.org/10.1029/2002RG000114, 2003.
Harrison, R. G. and Tammet, H.: Ions in Terrestrial Atmosphere and Other Solar System Atmospheres, Space Sci. Rev., 137, 107–118, 2008.
Hatakka, J., Paatero, J., Viisanen, Y., and Mattsson, R.: Variations of external radiation due to meteorological and hydrological factors in central Finland, Radiochemistry, 40, 534–538, 1998.
Hatakka, J., Aalto, T., Aaltonen, V., Aurela, M., Hakola, H., Komppula, M., Laurela, T., Lihavainen, H., Paatero, J., Salminen, K., and Viisanen, Y.: Overview of the atmospheric research activities and results at Pallas GAW station, Boreal Environ. Res., 8, 365–383, 2003.
Haverkamp, H., Wilhelm, S., Sorokin, A., and Arnold, F.: Positive and negative ion measurements in jet aircraft engine exhaust: concentrations, sizes and implications for aerosol formation, Atmos. Environ., 38, 2879–2884, 2004.
Hensen, A., and van der Hage, J. C. H.: Parametrization of cosmic radiation at sea level, J. Geophys. Res., 99(D5), 10,693–10,695, 1994.
Hewitt, G. W.: The charging of small particles for electrostatic precipitation, Trans. AIEE Comm. Electr., 76, 300–306, 1957.
Hidy, G.M.: Aerosols. An Industrial and Environmental Science, Academic Press, Inc., London, 757 pp., 1984.
Hinds, W. C.: Aerosol technology: properties, behaviour, and measurement of airborne particles, Wiley, New York, USA,, 1999.
Hirsikko, A., Laakso, L, Hõrrak, U., Aalto, P. P., Kerminen, V.-M., and Kulmala, M.: Annual and size dependent variation of growth rates and ion concentrations in boreal forest, Boreal Environ. Res., 10, 357–369, 2005.
Hirsikko, A., Bergmann, T., Laakso, L., Dal Maso, M., Riipinen, I., Hõrrak, U., and Kulmala, M.: Identification and classification of the formation of intermediate ions measured in boreal forest, Atmos. Chem. Phys., 7, 201–210, https://doi.org/10.5194/acp-7-201-2007, 2007a.
Hirsikko, A., Paatero, J., Hatakka, J., and Kulmala, M.: The 222Rn activity concentration, external radiation dose and air ion production rates in a boreal forest in Finland between March 2000 and June 2006, Boreal Environ. Res., 12, 265–278, 2007b.
Hirsikko, A., Yli-Juuti, T., Nieminen, T., Vartiainen, E., Laakso, L., Hussein, T., and Kulmala, M.: Indoor and outdoor air ions and aerosol particles in the urban atmosphere of Helsinki: characteristics, sources and formation, Boreal Environ. Res., 12, 295–310, 2007c.
Hogg, A. R.: The intermediate ions of the atmosphere, P. Phys. Soc. Lond., 51, 1014–1027, 1939.
Hoppel, W. A.: Ion-Aerosol Attachement Coefficients, Ion Depletion, and the Charge Distribution on Aerosols, J. Geophys. Res., 90, 5917–5923, 1985.
Hoppel, W. A. and Frick, G. M.: Ion-attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment, Aerosol Sci. Tech., 5, 1–21, 1986.
Hoppel, W. A. and Frick, G. M.: The nonequilibrium character of the aerosol charge distributions produced by neutralizers, Aerosol Sci. Tech., 12, 471–496, 1990.
Hõrrak, U.: Statistical results of air ions and aerosol measurements on the island of Vilsandi in the summer of 1984, Acta Comm. Univ. Tartu., 755, 47–57, 1987 (in Russian).
Hõrrak, U.: Air ion mobility spectrum at a rural area, in: Dissertationes Geophysicales Universitatis Tartuensis, 15, Tartu Univ. Press, Tartu, available at: http://ael.physic.ut.ee/KF.public/sci/publs/UH_thesis/, 2001.
Hõrrak, U., Iher, H., Luts, A., Salm, J., and Tammet, H.: Mobility spectrum of air ions at Takhuse Observatory, J. Geophys. Res., 99, 10697–10700, 1994.
Hõrrak, U., Mirme, A., Salm, J., Tamm, E., and Tammet, H.: Air ion measurements as a source of information about atmospheric aerosols, Atmos. Res., 46, 233–242, 1998a.
Hõrrak, U., Salm, J., and Tammet, H.: Bursts of intermediate ions in atmospheric air, J. Geophys. Res., 103, 13909–13915, 1998b.
Hõrrak, U., Salm, J., and Tammet, H.: Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions, J. Geophys. Res., 105, 9291–9302, 2000.
Hõrrak, U., Salm, J., and Tammet, H.: Diurnal variation in the concentration of air ions of different mobility classes in a rural area, J. Geophys. Res., 108(D20), 4653, https://doi.org/10.1029/2002JD003240, 2003.
Hõrrak, U., Tammet, H., Aalto, P. P., Vana, M., Hirsikko, A., Laakso, L., and Kulmala, M.: Formation of charged particles associated with rainfall: atmospheric measurements and lab experiments, Rep. Ser. Aerosol Sci., 80, 180–185, 2006.
Hõrrak, U., Aalto, P. P., Salm, J., Komsaare, K., Tammet, H., Mäkelä, J. M., Laakso, L., and Kulmala, M.: Variation and balance of positive air ion concentrations in a boreal forest, Atmos. Chem. Phys., 8, 655–675, https://doi.org/10.5194/acp-8-655-2008, 2008.
Hurd, F. K. and Mullins, J. C.: Aerosol Size Distributions from Ion Mobility, J. Colloid Interf. Sci., 17, 91–100, 1962.
Hussein, T., Dal Maso, M., Petäjä, T., Koponen, I. K., Paatero, P., Aalto, P. P., Hämeri, K., and Kulmala, M.: Evaluation of an automatic algorithm for fitting the particle number size distributions, Boreal Environ. Res., 10, 337–355, 2005.
Iida, K., Stolzenburg, M., McMurry, P., Dunn, M. J., Smith, J. N., Eisele, F., and Keady, P.: Contribution of ion-induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado, J. Geophys. Res., 111, D23201, https://doi.org/10.1029/2006JD007167, 2006.
Iida, K., Stolzenburg, M. R., McMurry, P. H., and Smith, J. N.: Estimating nanoparticle growth rates from size-dependent charged fractions: Analysis of new particle formation events in Mexico City, J. Geophys. Res., 113, D05207, https://doi.org/10.1029/2007JD009260, 2008.
Iida, K., Stolzenburg, M. R., and McMurry, P. H.: Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter, Aerosol Sci. Tech., 43(1), 81–96, 2009.
Ilic, R., Rusov, V. D., Pavlovych, V. N., Vaschenko, V. M., Hanzic, L., and Bondarchuk, Y. A.: Radon in Antarctica, Radiat. Meas., 40, 415–422, 2005.
Israël, H.: Ein transportables Messgerät für schwere Ionen, Z. Geophys., 5, 342–350, 1929.
Israël, H.: Zur Theorie und Methodik der {\rm Gr}össenbestimmung von Luftionen, Gerlands Beitr. Geophys., 31, 173–216, 1931.
Israël, H.: Atmospheric Electricity, Israel Program for Scientific Translations, Jerusalem, 1, 317 pp., 1970.
Israel, H. and Schulz, L.: The mobility-spectrum of atmospheric ions-principles of measurements and results, Terr. Magn., 38, 285–300, 1933.
Israelsson, S. and Knudsen, E.: Effects of radioactive fallout from a nuclear power plant accident on electrical parameters, J. Geophys. Res., 91(D11), 11909–11910, 1986.
Jayaratne, E. R., Ling, X., and Morawska, L.: Ions in motor vehicle exhaust and their dispersion near busy roads, Atmos. Environ., 44, 3644–3650, 2010.
Jiang, J., Zhao, J., Chen, M., Eisele, F.L., Scheckman, J., Williams, B.J., Kuang, C., and McMurry, P.H.: First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events, Aerosol Sci. Technol. (Aerosol Research Letter), 45, 4, ii–v, 2011a.
Jiang, J., Chen, M., Kuang, C., Attoui, M., and McMurry, P. H.: Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurements of Aerosol Size Distributions Down to 1 nm, Aerosol Sci. Technol., 45, 4, 510–521, 2011b.
Junninen, H., Hulkkonen, M., Riipinen, I., Nieminen, T., Hirsikko, A., Suni, T., Boy, M., Lee, S.-H., Vana, M., Tammet, H., Kerminen, V.-M., and Kulmala M.: Observations on nocturnal growth of atmospheric clusters, Tellus, 60B, 365–371, 2008.
Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Roghner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010.
Kamra, A. K., Siingh, D., and Pant, V.: Scavenging of atmospheric ions and aerosol by drifting snow in Antarctica, Atmos. Res., 91, 215–218, 2009.
Kazil, J., Harrison, R. G., and Lovejoy, E. R.: Tropospheric New Particle Formation and the Role of Ions, Space Sci. Rev., 137, 241–255, 2008.
Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U., and Feichter, J.: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733–10752, https://doi.org/10.5194/acp-10-10733-2010, 2010.
Kanawade, V. and Tripathi, S. N.: Evidence for the role of ion-induced particle formation during an atmospheric nucleation event observed in Tropospheric Ozone Production about the Spring Equinox (TOPSE), J. Geophys. Res., 111, D02209, https://doi.org/10.1029/2005JD006366, 2006.
Keesee, R. G. and Castleman Jr., A. W.: Ions and cluster ions: Experimental studies and atmospheric observations, J. Geophys. Res., 90, 5885–45890, 1985.
Kerminen, V.-M., Anttila, T., Petäjä, T., Laakso, L., Gagné, S., Lehtinen, K. E. J., and Kulmala, M.: Charging state of the atmospheric nucleation mode: Implications for separating neutral and ion-induced nucleation, J. Geophys. Res., 112, D21205, https://doi.org/10.1029/2007JD008649, 2007.
%Kerminen, V.-M., Petäjä, T., Manninen, H. E., Paasonen, P., %Nieminen, T., Sipilä, M., Junninen, H., Ehn, M., Gagné, S, Laakso, %L., Riipinen, I., Vehkamäki, H., Kurtén, T., Ortega, I. K., Dal %Maso, M., Brus, D., Hyvärinen, A., Lihavainen, H., Leppä, J., %Lehtinen, K. E. J., Mirme, A., Mirme, S., Hõrrak, U., Berndt, T., %Stratmann, F., Birmili, W., Wiedensohler, A., Metzger, A., Dommen, J., %Baltensperger, U., Kiendler-Scharr, A., Mentel, T. F., Wildt, J., Winkler, %P. M., Wagner, P. E., Petzold, A., Minikin, A., Plass-Dülmer, C., %Pöschl, U., Laaksonen, A., and Kulmala, M.: Atmospheric nucleation: %highlights of the EUCAARI project and future directions, Atmos. Chem. Phys., %10, 10829-10848, 2010. Kerminen, V.-M., Petäjä, T., Manninen, H. E., Paasonen, P., Nieminen, T., Sipilä, M., Junninen, H., Ehn, M., Gagné, S., Laakso, L., Riipinen, I., Vehkamäki, H., Kurten, T., Ortega, I. K., Dal Maso, M., Brus, D., Hyvärinen, A., Lihavainen, H., Leppä, J., Lehtinen, K. E. J., Mirme, A., Mirme, S., Hõrrak, U., Berndt, T., Stratmann, F., Birmili, W., Wiedensohler, A., Metzger, A., Dommen, J., Baltensperger, U., Kiendler-Scharr, A., Mentel, T. F., Wildt, J., Winkler, P. M., Wagner, P. E., Petzold, A., Minikin, A., Plass-Dülmer, C., Pöschl, U., Laaksonen, A., and Kulmala, M.: Atmospheric nucleation: highlights of the EUCAARI project and future directions, Atmos. Chem. Phys., 10, 10829–10848, https://doi.org/10.5194/acp-10-10829-2010, 2010.
Kirkby, J.: Cosmic rays and climate, Surv. Geophys., 28, 333–375, 2008.
Knutson, E. O. and Whitby, K. T.: Accurate measurement of aerosol electric mobility moments, J. Aerosol Sci., 6, 443–451, 1975.
Komppula, M., Vana, M., Kerminen, V.-M., Lihavainen, H., Viisanen, Y., Hõrrak, U., Komsaare, K., Tamm, E., Hirsikko, A., Laakso, L., and Kulmala, M.: Size distributions of atmospheric ions in the Baltic Sea region, Boreal Environ. Res., 12, 323–336, 2007.
Ku, B. K. and de la Mora, J. F.: Relation between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air, Aerosol Sci. Tech., 43, 241–249, 2009.
Kuang, C., McMurry, P. H., McCormick, A. V., and Eisele, F. L.: Dependence of nucleation rates on sulphuric acid vapor concentration in diverse atmospheric locations, J. Geophys. Res.-Atmos, 113(D10), D10209, https://doi.org/10.1029/2007JD009253, 2008.
Kulmala, M. and Kerminen, V.-M.: On the formation and growth of atmospheric nanoparticles, Atmos. Res., 90, 132–150, 2008.
Kulmala, M. and Tammet, H.: Finnish-Estonian air ion and aerosol workshops, Boreal Environ. Res., 12, 237–245, 2007.
Kulmala, M., Dal Maso, M., Mäkelä, J.M., Pirjola, L., Väkevä, M., Aalto, P., Miikkulainen, P., Hämeri, K. and O'Dowd, C.: On the formation, growth and composition of nucleation mode particles, Tellus B, 53, 479–490, 2001.
Kulmala, M., Hari, P., Laaksonen, A., Vesala, T., and Viisanen, Y.: Research Unit of Physics, Chemistry and Biology of Atmospheric Composition and Climate Change: overview of recent results, Boreal Env. Res., 10, 459–477, 2005.
Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A.: Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys., 6, 787–793, https://doi.org/10.5194/acp-6-787-2006, 2006.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, 2004a.
Kulmala, M., Laakso, L., Lehtinen, K. E. J., Riipinen, I., Dal Maso, M., Anttila, T., Kerminen, V.-M., Hõrral, U., Vana, M., and Tammet, H.: Initial steps of aerosol growth, Atmos. Chem. Phys., 4, 2553–2560, https://doi.org/10.5194/acp-4-2553-2004, 2004b.
Kulmala, M., Riipinen, I., Sipilä, M., Manninen, H. E., Petäjä, T., Junninen, H., Dal Maso, M., Mordas, G., Mirme, A., Vana, M., Hirsikko, A., Laakso, L., Harrison, R. M., Hanson, I., Leung, C., Lehtinen, K. E. J., and Kerminen, V.-M.: Toward direct measurement of atmospheric nucleation, Science, 318, 89–92, 2007.
Kulmala, M., Riipinen, I., Nieminen, T., Hulkkonen, M., Sogacheva, L., Manninen, H. E., Paasonen, P., Petäjä, T., Dal Maso, M., Aalto, P. P., Viljanen, A., Usoskin, I., Vainio, R., Mirme, S., Mirme, A., Minikin, A., Petzold, A., Hõrrak, U., Plaß-Dülmer, C., Birmili, W., and Kerminen, V.-M.: Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation, Atmos. Chem. Phys., 10, 1885–1898, https://doi.org/10.5194/acp-10-1885-2010, 2010.
Laakso, L., Mäkelä, J. M., Pirjola, L., and Kulmala, M.: Model studies on ion-induced nucleation in the atmosphere, J. Geophys. Res., 107(D20), 4427, https://doi.org/10.1029/2002JD002140, 2002.
Laakso, L., Petäjä, T., Lehtinen, K. E. J., Kulmala, M., Paatero, J., Hõrrak, U., Tammet, H., and Joutsensaari, J.: Ion production rate in a boreal forest based on ion, particle and radiation measurements, Atmos. Chem. Phys., 4, 1933–1943, https://doi.org/10.5194/acp-4-1933-2004, 2004a.
Laakso, L., Anttila, T., Lehtinen, K. E. J., Aalto, P. P., Kulmala, M., Hõrrak, U., Paatero, J., Hanke, M., and Arnold, F.: Kinetic nucleation and ions in boreal forest particle formation events, Atmos. Chem. Phys., 4, 2353–2366, https://doi.org/10.5194/acp-4-2353-2004, 2004b.
Laakso, L., Gagné, S., Petäjä, T., Hirsikko, A., Aalto, P. P., Kulmala, M., and Kerminen, V.-M.: Detecting charging state of ultra-fine particles: instrumental development and ambient measurement, Atmos. Chem. Phys., 7, 1333–1345, https://doi.org/10.5194/acp-7-1333-2007, 2007a.
Laakso, L., Hirsikko, A., {\rm Gr}önholm, T., Kulmala, M., Luts, A., and Parts, T.-E.: Waterfalls as sources of small charged aerosol particles, Atmos. Chem. Phys., 7, 2271–2275, https://doi.org/10.5194/acp-7-2271-2007, 2007b.
Laakso, L., {\rm Gr}önholm, T., Kulmala, L., Haapanala, S., Hirsikko, A., Lovejoy, E. R., Kazil, J., Kurtén, T., Boy, M., Nilsson, E. D., Sogachev, A., Riipinen, I., Stratmann, F., and Kulmala, M.: Hot-air balloon as a platform for boundary layer profile measurements during particle formation, Boreal Environ. Res., 12, 279–294, 2007c.
Laakso, L., Laakso, H., Aalto, P. P., Keronen, P., Petäjä, T., Nieminen, T., Pohja, T., Siivola, E., Kulmala, M., Kgabi, N., Molefe, M., Mabaso, D., Phalatse, D., Pienaar, K., and Kerminen, V.-M.: Basic characteristics of atmospheric particles trace gases and meteorology in a relatively clean Southern African Savannah environment, Atmos. Chem. Phys., 8, 4823–4839, https://doi.org/10.5194/acp-8-4823-2008, 2008.
Langevin, P.: Sur les ions de l'atmosphère, C. R. Acad. Sci., 140, 232–234, 1905.
Lee, S.-H., Reeves, J. M., Wilson, J. C., Hunton, D. E., Viggiano, A. A., Miller, T. M., Ballenthin, J. O., and Lait, L. R.: Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, 301, 1886–1889, 2003.
Lee, S.-H., Young, L.-H., Benson, D. R., Suni, T., Kulmala, M., Junninen, H., Campos, T. L., Rogers, D. C., and Jensen, J.: Observations of nighttime new particle formation in the troposphere, J. Geophys. Res., 113, D10210, https://doi.org/10.1029/2007JD009351, 2008.
Lehtinen, K. E. J. and Kulmala, M.: A model for particle formation and growth in the atmosphere with molecular resolution in size, Atmos. Chem. Phys., 3, 251–258, https://doi.org/10.5194/acp-3-251-2003, 2003.
Lehtipalo, K., Sipilä, M., Riipinen, I., Nieminen, T., and Kulmala, M.: Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC, Atmos. Chem. Phys., 9, 4177–4184, https://doi.org/10.5194/acp-9-4177-2009, 2009.
Lehtipalo, K., Sipilä, M., Junninen, H., Ehn, M., Berndt, T., Kajos, M. K., Worsnop, D. R., Petäjä, T., and Kulmala, M.: Observations of Nano-CN in the Nocturnal Boreal Forest, Aerosol Sci. Technol., 45, 4, 499–509, 2011.
Lehtipalo, K., Kulmala, M., Sipilä, M., Petäjä, T., Vana, M., Ceburnis, D., Dupuy, R., and O'Dowd, C.: Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism, Atmos. Chem. Phys., 10, 7009–7016, https://doi.org/10.5194/acp-10-7009-2010, 2010.
Leppä, J., Kerminen, V.-M., Laakso, L., Korhonen, H., Lehtinen, K. E. J., Gagne, S., Manninen, H. E., Nieminen, T., and Kulmala, M.: Ion-UHMA: a model for simulating the dynamics of neutral and charged aerosol particles, Boreal Environ. Res., 14, 559–575, 2009.
Li, Z. and Wang, H.: Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime, Phys. Rev. E, 68, 061206, https://doi.org/10.1103/PhysRevE.68.061206, 2003.
Lihavainen, H., Komppula, M., Kerminen, V.-M., Järvinen, H., Viisanen, Y., Lehtinen, K., Vana, M., and Kulmala, M.: Size distributions of atmospheric ions inside clouds and in cloud-free air at a remote continental site, Boreal Environ. Res., 12, 337–344, 2007.
Ling, X., Jayaratne, R., and Morawska, L.: Air ion concentrations in various urban outdoor environments, Atmos. Environ., 44, 2186–2193, 2010.
Liu, B. Y. H. and Pui, D. Y. H.: A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter, J. Colloid Interface Sci., 47, 155–171, 1974.
Loscertales, I. G.: Drift differential mobility analyzer, J. Aerosol Sci. 29, 1117–1139, 1998.
Luts, A. and Parts, T.-E.: Evolution of negative small air ions at two different temperatures, J. Atmos. Sol.-Terr. Phys., 64, 763–774, 2002.
Lähde, T., Rönkkö, T., Virtanen, A., Schuck, T. J., Pirjola, L., Hämeri, K., Kulmala, M., Arnold, F., Rothe, D., and Keskinen, J.: Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements, Environ. Sci. Tech., 43, 163–168, 2009.
Manninen, H. E., Petäjä, T., Asmi, E., Riipinen, I., Nieminen, T., Mikkilä, J., Hõrrak, U., Mirme, A., Mirme, S., Laakso, L., Kerminen, V.-M., and Kulmala, M.: Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS), Boreal Environ. Res., 14, 591–605, 2009a.
Manninen, H. E., Nieminen, T., Riipinen, I., Yli-Juuti, T., Gagné, S., Asmi, E., Aalto, P. P., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä, Atmos. Chem. Phys., 9, 4077–4089, https://doi.org/10.5194/acp-9-4077-2009, 2009b.
Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S., Lehtipalo, K., Aalto, P., Vana, M., Mirme, A., Mirme, S., Hõrrak, U., Plass-Dülmer, C., Stange, G., Kiss, G., Hoffer, A., Töro, N., Moerman, M., Henzing, B., de Leeuw, G., Brinkenberg, M., Kouvarakis, G. N., Bougiatioti, A., Mihalopoulos, N., O'Dowd, C., Ceburnis, D., Arneth, A., Svenningsson, B., Swietlicki, E., Tarozzi, L., Decesari, S., Facchini, M.C., Birmili, W., Sonntag, A., Wiedensohler, A., Boulon, J., Sellegri, K., Laj, P., Gysel, M., Bukowiecki, N., Weingartner, E., Wehrle, G., Laaksonen, A., Hamed, A., Joutsensaari, J., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: EUCAARI ion spectrometer measurements at 12 European sites – analysis of new-particle formation events, Atmos. Chem. Phys., 10, 7907–7927, https://doi.org/10.5194/acp-10-7907-2010, 2010.
Matisen, R., Miller, F., Tammet, H., and Salm, J.: Air ion counters and spectrometers designed in Tartu University, Acta Comm. Univ. Tartu., 947, 60–67, 1992.
McClelland, J. A.: On the conductivity of hot gases from flames, Philos. Mag., 46, 29–42, 1898.
Mehra, R., Singh, S., and Singh, K.: Analysis of 226 Ra, 232 Th and 40 K in soil samples for the assessment of the average effective dose, Indian J. Phys., 83, 1031–1037, 2009.
Millikan, R. A.: The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces, Phys. Rev., 22, 1–23, 1923.
Mirme, A., Tamm, E., Mordas, G., Vana, M., Uin, J., Mirme, S., Bernotas, T., Laakso, L., Hirsikko, A., and Kulmala, M.: A wide-range multi-channel Air Ion Spectrometer, Boreal Environ. Res., 12, 247–264, 2007.
Mirme, S., Mirme, A., Minikin, A., Petzold, A., Hõrrak, U., Kerminen, V.-M., and Kulmala, M.: Atmospheric sub-3nm particles at high altitudes, Atmos. Chem. Phys., 10, 437–451, https://doi.org/10.5194/acp-10-437-2010, 2010.
Misaki, M.: A Method of Measuring the Ion Spectrum, Pap. Meteorol. Geophys., 1, 313–318, 1950.
Misaki, M.: Studies on the Atmospheric ion Spectrum (I). Procedures of experimental and data analysis, Pap. Meteorol. Geophys., 12, 247–260, 1961a.
Misaki, M.: Studies on the Atmospheric Ion Spectrum (II). Relation between the ion spectrum and the electrical conductivity, Pap. Meteorol. Geophys., 12, 261–276, 1961b.
Misaki, M., Ohtagaki, M., and Kanazawa, I.: Mobility spectrometry of the atmospheric pollution, Pure Appl. Geophys., 100, 133–145, 1972a.
Misaki, M., Ikegami, M., and Kanazawa, I.: Atmospheric electrical conductivity measurement in the Pasific Ocean, exploring the background level of global pollution, J. Meteorol. Soc. Japan, 50, 497–500, 1972b.
Misaki, M., Ikegami, M., and Kanazawa, I.: Deformation of the size distribution of aerosol particles dispersing from land to ocean, J. Meteorol. Soc. Japan, 53, 111–120, 1975.
Mohnen, V. A.: Formation, nature and mobility of ions of atmospheric importance, in: Electrical Processes in Atmospheres, edited by: Dolezalek, H. and Reiter, R., Dr. Dietrich Steinkopff Verlag, Darmstadt, Germany, 1–17, 1977.
Modini, R. L., Ristovski, Z. D., Johnson, G. R., He, C., Surawski, N., Morawska, L., Suni, T., and Kulmala, M.: New particle formation and growth at a remote, sub-tropical coastal location, Atmos. Chem. Phys., 9, 7607–7621, https://doi.org/10.5194/acp-9-7607-2009, 2009.
Myhre, G.: Consistency between satellite-derived and modelled estimates of the direct aerosol effect, Science, 325, 187–190, 2009.
Myles, L. T., Meyers, T. P., and Robinson, L.: Atmospheric ammonia measurement with an ion mobility spectrometer, Atmos. Environ., 40, 5745–5752, 2006.
Mäkelä, J.M., Riihelä, M., Ukkonen, A., Jokinen, V., and Keskinen, J.: Comparison of mobility equivalent with Kelvin-Thomson diameter using ion mobility data, J. Chem. Phys., 105, 1562–1571, 1996.
Nadykto, A. B. and Yu, F.: Formation of binary ion clusters from polar vapours: effect of the dipole-charge interaction, Atmos. Chem. Phys., 4, 385–389, https://doi.org/10.5194/acp-4-385-2004, 2004.
Nagaraja, K., Prasad, B. S. N., Madhava, M. S., and Paramesh, L.: Concentration of radon and its progeny near the surface of the earth at a continental station Pune (18° N, 74° E), Ind. J. Pure Ap. Phys., 41, 562–569, 2003.
Nagato, K. and Ogawa, T.: Evolution of tropospheric ions observed by an ion mobility spectrometer with a drift tube, J. Geophys. Res., 103, 13917–13925, 1998.
Nagato, K., Tanner, D. J., Friedli, H.R., and Eisele, F.L.: Field measurement of positivie ion mobility and mass spectra at a Colorado site in winter, J. Geophys. Res., 104, 3471–3482, 1999.
Nieminen, T., Manninen, H. E., Sihto, S.-L., Yli-Juuti, T., Mauldin, I. L., III., Petäjä, T., Riipinen, I., Kerminen, V.-M., and Kulmala, M.: Connection of Sulphuric Acid to Atmospheric Nucleation in Boreal Forest, Environ. Sci. Technol., 43, 4715–4721, 2009.
Nolan, J. J. and de Sachy, G. P.: Atmospheric ionization, P. Roy. Irish Acad., A37, 71–94, 1927.
Norinder, H. and Siksna, R.: Variations in the density of small ions caused by the accumulation of emanation exhaled from the soil, Tellus, 2, 168–172, 1950.
Ogawa, T.: Fair-weather electricity, J. Geophys. Res., 90, 5951–5960, 1985.
Paasonen, P., Sihto, S.-L., Nieminen, T., Vuollekoski, H., Riipinen, I., Plaβ-Dülmer, C., Berresheim, H., Birmili, W., and Kulmala, M.: Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the influence of organic compounds, Boreal Environ. Res., 14, 616–629, 2009.
Paasonen, P., Nieminen, T., Asmi, E., Manninen, H., Petäjä, T., Plass-Dülner, C., Birmili, W., Hõrrak, U., Metzger, A., Baltensperger, U., Hamed, A., Laaksonen, A., Kerminen, V.-M., and Kulmala, M.: On the role of sulphuric acid and low-volatility organic vapours in new particle formation at four European measurement sites, Atmos. Chem. Phys., 10, 11223–11242, https://doi.org/10.5194/acp-10-11223-2010, 2010.
Parts, T.-E. and Luts, A.: Observed and simulated effects of certain pollutants on small air ion spectra: I. Positive ions, Atmos. Environ., 38(9), 1283–1289, 2004.
Pawar, S. D., Siingh, D., Gopalakrishnan, V., and Kamra, A. K.: Effect of the onset of southwest monsoon on the atmospheric electric conductivity over the Arabian Sea, J. Geophys. Res., 110, D10204, https://doi.org/10.1029/2004JD005689, 2005.
Pedersen, C. S., Lauritsen, F. R., Sysoev, A., Viitanen, A.-K., Mäkelä, J. M., Adamov, A., Laakia, J., Mauriala, T., and Kotiaho, T.: Characterazation of Proton-Bound Acetate Dimers in Ion Mobility Spectrometry, J. Am. Soc. Mass Spectr., 19, 1361–1366, 2008.
Pollock, J. A.: A new type of ion in the air, Philos. Mag., 29, 636–646, 1915.
Prüller, P. and Saks, O.: Ion counter with automatic photorecorder and vibrating-reed electrometer, Acta Comm. Univ. Tartu., 240, 32–60, 1970.
Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J.E., Gettelman, A., Lohmann, U., Bellouin, N., Boucher, O., Sayer, A.M., Thomas, G.E., McComiskey, A., Feingold, G., Hoose, C., Kristjánsson, J.E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P.A., Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S.E., Koch, D., Grainger, R.G., Kirkevåg, A., Iversen, T., Seland, Ø., Easter, R., Ghan, S.J., Rasch, P.J., Morrison, H., Lamarque, J.-F., Iacono, M. J., Kinne, S., and Schulz, M.: Aerosol indirect effects – general circulation mode intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 8697–8717, https://doi.org/10.5194/acp-9-8697-2009, 2009.
Reinet, J.: A combined counter of atmospheric ions (Russian), Tr. Main Geophys. Observ., 58, 23–30, 1956.
Reinet, J.: On the changes of atmospheric ionization in Tartu during a yearly period (Estonian), Acta Comm. Univ. Tartu., 59, 71–107, 1958.
Reiter, R.: Frequency distribution of positive and negative small ion concentrations, based on many years' recordings at two mountain stations located at 740 and 1780 m a.s.l., Int. J. Biometeorol., 29, 223–231, 1985.
Retalis, D. A.: On the Relationship Between Small Atmospheric Ions Concentration and (1) Smoke, (2) Sulfur Dioxide and (3) Wind Speed, Pure Appl. Geophys., 115, 575–581, 1977.
Retalis, D. and Pitta, A.: Effects of electrical parameters at Athens Greece by radioactive fallout from a nuclear power plant accident, J. Geophys. Res., 94(D11), 13093–13097, 1989.
Retalis, A., Nastos, P., and Retalis, D.: Study of small ions concentration in the air above Athens, Greece, Atmos. Res., 91, 219–228, 2009.
Richmann, G. W.: De electricitate in corporibus producenda nova tentamina, Commentarii Acad. Sci. Imper. Petropolitanae., 14, 299–326, 1744-1746, 1751.
Richmann, G. W.: Trudy po fizike (translations into Russian), edited by: Eliseev, A. A., Zubov, V. P., and Murzin, A. M., Akad. Nauk. SSSR, Moscow, 1956.
Riecke, E.: Beiträge zu der Lehre von der Luftelektrizität, Ann. Phys., 12, 52–84, 1903.
Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K., Kerminen, V.-M., Laaksonen, A., and Lehtinen, K. E. J.: Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä, Atmos. Chem. Phys., 7, 1899–1914, https://doi.org/10.5194/acp-7-1899-2007, 2007.
Riipinen, I., Manninen, H.E., Yli-Juuti, T., Boy, M., Sipilä, M., Ehn, M., Junninen, H., Petäjä, T., and Kulmala, M.: Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2-9 nm particles in boreal forest, Atmos. Chem. Phys., 9, 3317–3330, https://doi.org/10.5194/acp-9-3317-2009, 2009.
Ristovski, Z. D., Suni, T., Kulmala, M., Boy M., Meyer, N. K., Duplissy, J., Turnipseed, A., Morawska, L., and Baltensperger, U.: The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest, Atmos. Chem. Phys., 10, 2919–2926, https://doi.org/10.5194/acp-10-2919-2010, 2010.
Robertson, L. B., Stevenson, D. S., and Conen, F.: Test of a northwards-decreasing 222Rn source term by comparison of modelled and observed atmospheric 222Rn concentrations, Tellus, 57B, 116–123, 2005.
Rosen, J. M., Hofmann, D. J., and Gringel, W.: Measurements of ion mobility to 30 km, J. Geophys. Res., 90, 5876–5884, 1985.
Russell, A. G. and Brunekreef, B.: A focus on particulate matter and health, Environ. Sci. Tech., 43, 4620–4625, 2009.
Ruuskanen, T. M., Kaasik, M., Aalto, P. P., Hõrrak, U., Vana, M., Mårtensson, M., Yoon, Y. J., Keronen, P., Mordas, G., Ceburnis, D., Nilsson, E. D., O'Dowd, C., Noppel, M., Alliksaar, T., Ivask, J., Sofiev, M., Prank, M., and Kulmala, M.: Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Värriö field station, Atmos. Chem. Phys., 7, 3683–3700, https://doi.org/10.5194/acp-7-3683-2007, 2007.
Rutherford, E.: The velocity and rate of recombination of the ions of gases exposed to Rontgen radiation, Philos. Mag., 44, 422–440, 1897.
Salm, J., Tammet, H., Iher, H., and Hõrrak, U.: The dependence of small air ion mobility spectra in the ground layer of the atmosphere on temperature and pressure, Acta Comm. Univ. Tartu., 947, 50–56, 1992.
Saros, M., Weber, R. J., Marti, J., and McMurry, P. H.: Ultra fine aerosol measurement using a condensation nucleus counter with pulse height analysis, Aerosol Sci. Tech., 25, 200–213, 1996.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, John Wiley & Sons, Inc., New York, USA, 1998.
Sgro, L. A. and Fernandez de la Mora, J.: A Simple Turbulent Mixing CNC for Charged Particle Detection Down to 1.2 nm, Aerosol Sci. Tech., 38, 1–11, 2004.
Shashikumar, T. S., Ragini, N., Chandrashekara, M. S., and Paramesh, L.: Studies on radon in soil, its concentration in the atmosphere and gamma exposure rate around Mysore city, India, Curr. Sci., 94, 1180–1185, 2008.
Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J.: Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos. Chem. Phys., 6, 4079–4091, https://doi.org/10.5194/acp-6-4079-2006, 2006.
Siingh, D., Pawar, S. D., Gopalakrishnan, V., and Kamra, A. K.: Measurements of the ion concentrations and conductivity over the Arabian Sea during ARMEX, J. Geophys. Res., 110, D18207, https://doi.org/10.1029/2005JD005765, 2005.
Siingh, D., Pant, V., and Kamra, A. K.: Measurements of positive ions and air-Earth current density at Maitri, Antarctica, J. Geophys. Res., 112, D13212, https://doi.org/10.1029/2006JD008101, 2007.
Siksna, R.: Variations of large-ions in atmospheric air during disturbed weather conditions, Arkiv Geofys., 1, 237–246, 1950.
Sipilä, M., Lehtipalo, K., Kulmala, M., Petäjä, T., Junninen, H., Aalto, P.P., Manninen, H. E., Kyrö, E.-M., Asmi, E., Riipinen, I., Curtius, J., Kürten, A., Borrmann, S., and O'Dowd, C. D.: Applicability of condensation particle counters to measure atmospheric clusters, Atmos. Chem. Phys., 8, 4049–4060, https://doi.org/10.5194/acp-8-4049-2008, 2008.
Sipilä, M., Lehtipalo, K., Attoui, M., Neitola, K., Petäjä, T., Aalto, P. P., O'Dowd, C. D., and Kulmala, M.: Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters, Aerosol Sci. Tech., 43, 126–135, 2009.
Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin, III R.L., Hyvärinen, A.-P., Lihavainen, H., and Kulmala, M.: The Role of Sulfuric Acid in Atmospheric Nucleation, Science, 5, 1243–1246, 2010.
Smirnov, V. V.: Nature and Evolution of Ultrafine Aerosol Particles in the Atmosphere, Izv. Atmos. Ocean. Phys., 42, 663–687, 2006.
Smirnov, V. V., Radionov, V. F., Savchenko, A. V., Pronin, A. A., and Kuusk, V. V.: Variability in aerosol and air ion composition in the Arctic spring atmosphere, Atmos. Res., 49, 163–176, 1998.
Smith, J. N., Moore, K. F., Eisele, F. L., Voisin, D., Ghimire, A. K., Sakurai, H., and McMurry, P. H.: Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta, J. Geophys. Res., 110, D22S03, https://doi.org/10.1029/2005JD005912, 2005.
Smith, J. N., Dunn, M. J., VanReken, T. M., Iida, K., Stolzenburg, M. R., McMurry, P. H., and Huye, L. G.: Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth, Geophys. Res. Lett., 35, L04808, https://doi.org/10.1029/2007GL032523, 2008.
Smith, J. N., Barsanti, K. C., Friedli, H. R., Ehn, M., Kulmala, M., Collins, D. R., Scheckman, J. H., Williams, B. J., and McMurry, P. H.: Observations of aminium salts in atmospheric nanoparticles and possible climatic implications, P. Natl. Acad. Sci, 107, 6634–6639, 2010.
Sogacheva, L., Dal Maso, M., Kerminen, V.-M., and Kulmala, M.: Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiälä, southern Finland, based on back trajectories analysis, Boreal Environ. Res., 10, 479–491, 2005.
Stolzenburg, M. R.: An Ultrafine Aerosol Size Distribution Measuring System, Ph.D. Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA, 1988.
Stolzenburg , M. R. and McMurry, P. H.: An Ultrafine Aerosol Condensation Nucleus Counter, Aerosol Sci. Tech., 14, 48–65, 1991.
Stolzenburg, M. R. and McMurry, P. H.: Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function, Aerosol Sci. Tech., 42, 421–432, 2008.
Stolzenburg, M. R., McMurry, P. H., Sakurai, H., Smith, J. N., Mauldin III, R. L., Eisele, F. L., and Clement, C. F.: Growth rates of freshly nucleated particles in Atlanta, J. Geophys. Res., 110, D22S05, https://doi.org/10.1029/2005JD005935, 2005.
Suni, T., Kulmala, M., Hirsikko, A., Bergman, T., Laakso, L., Aalto, P. P., Leuning, R., Cleugh, H., Zegelin, S., Hughes, D., van Gorsel, E., Kitchen, M., Vana, M., Hõrrak, U., Mirme, A., Sevanto, S., Twining, J., and Tadros, C.: Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest, Atmos. Chem. Phys., 8, 129–139, https://doi.org/10.5194/acp-8-129-2008, 2008.
Suni, T., Sogacheva, L., Lauros, J., Hakola, H., Bäck, J., Kurtén, T., Cleugh, H., van Gorsel, E., Briggs, P., Sevanto, S., and Kulmala, M.: Cold oceans enhance terrestrial new-particle formaton in near-coastal forests, Atmos. Chem. Phys., 9, 8639–8650, https://doi.org/10.5194/acp-9-8639-2009, 2009.
Suzuki, K., Iritani, M., and Mitsukuchi, T.: Measurements of small ion mobility spectrum with multi-electrodes Gerdien condenser, Res. Lett. Atmos. Electr., 2, 1–4, 1982.
Svenningsson, B., Arneth, A., Hayward, S., Holst, T., Massling, A., Swietlicki, E., Hirsikko, A., Junninen, H., Riipinen, I., Vana, M., Dal Maso, M., Hussein, T., and Kulmala, M.: Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic, Tellus, 60B, 353–364, 2008.
Szegvary, T., Conen, F., Stöhlker, U., Dubois, G., Bossew, P., and de Vries, G.: Mapping terrestrial γ-dose rate in Europe based on routine monitoring data, Radiat. Meas., 42, 1561–1572, 2007.
Szegvary, T., Conen, F., and Ciais, P.: European 222Rn inventory for applied atmospheric studies, Atmos. Environ., 43, 1536–1539, 2009.
Tammet, H.: The aspiration method for the determination of atmospheric ion-spectra, Israel Program for Scientific Translations, Jerusalem, 208 pp., 1970.
Tammet, H.: Size and mobility of nanometer particles, clusters and ions, J. Aerosol Sci., 26, 459–475, 1995.
Tammet, H.: Reduction of air ion mobility to standard conditions, J. Geophys. Res., 103, 13933–13937, 1998.
Tammet, H.: The limits of air ion mobility resolution, Proc. 11th Int. Conf. Atmos. Electr., NASA, MSFC, Alabama, 626–629, 1999.
Tammet, H.: Inclined grid mobility analyzer: The plain model, Abstracts of Sixth International Aerosol Conference, International Aerosol Research Assembly, Taipei, 2, 647–648, 2002.
Tammet, H.: Method of inclined velocities in the air ion mobility analysis, in: Proceedings of the 12-th International Conference on Atmospheric Electricity, International Commision on Atmospheric Electricity, Versailles, 1, 399–402, 2003.
Tammet, H.: Continuous scanning of the mobility and size distribution of charged clusters and nanoparticles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA, Atmos. Res., 82, 523–535, 2006.
Tammet, H.: A joint dataset of fair-weather atmospheric electricity, Atmos. Res., 91, 194–200, http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2008.01.012, 2009.
Tammet, H. F., Jakobson, A. F., and Salm, J. J.: Multi-channel automatic air ion spectrometer (in Russian), Acta Comm. Univ. Tartu., 320, 48–75, 1973.
Tammet, H., Hõrrak, U., Laakso, L., and Kulmala, M.: Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland, Atmos. Chem. Phys., 6, 3377–3390, https://doi.org/10.5194/acp-6-3377-2006, 2006.
Tammet, H., Hõrrak, U., and Kulmala, M.: Negatively charged nanoparticles produced by splashing of water, Atmos. Chem. Phys., 9, 357–367, https://doi.org/10.5194/acp-9-357-2009, 2009.
Thomson, J. J.: Conduction of Electricity through Gases, Cambridge University Press, Cambridge, Vi, 566 pp., 1903.
Tiitta, P., Miettinen, P., Vaattovaara, P., Laaksonen, A., Joutsensaari, J., Hirsikko, A., Aalto, P. and Kulmala, M.: Road-side measurements of aerosol and ion number size distributions: a comparison with remote site measurements, Boreal Environ. Res., 12, 311–321, 2007.
Tuomi, T. J.: Ten year summary 1977–1986 of atmospheric electricity measured at Helsinki-Vantaa airport, Finland, Geophysica, 25, 1–20, 1989.
Vakkari, V., Laakso, H., Kulmala, M., Laaksonen, A., Mabaso, D., Molefe, M., Kgabi, N., and Laakso, L.: New particle formation events in semi-clean South African savannah, Atmos. Chem. Phys. Discuss., 10, 30777–30821, 2010.
Vana, M., Kulmala, M., Dal Maso, M., Hõrrak, U., and Tamm, E.: Comparative study of nucleation mode aerosol particles and intermediate ions formation events at three sites, J. Geophys. Res., 109, D17201, https://doi.org/10.1029/2003JD004413, 2004.
Vana, M., Tamm, E., Hõrrak, U., Mirme, A., Tammet, H., Laakso, L., Aalto, P. P., and Kulmala, M.: Charging state of atmospheric nanoparticles during the nucleation burst events, Atmos. Res., 82, 536–546, 2006a.
Vana, M., Hirsikko, A., Tamm, E., Aalto, P., Kulmala, M., Verheggen, B., Cozic, J., Weingartner, E., and Baltensperger, U.: Characteristics of Air Ions and Aerosol Particles at the High Alpine Research Station Jungfraujoch, Proceedings of 7-th International Aerosol Conference, the American Association for Aerosol Research (AAAR), ISBN 978-0-9788735-0-9, 1427, 2006b.
Vana, M., Virkkula, A., Hirsikko, A., Aalto, P., Kulmala, M., and Hillamo, R.: Air Ion Measurements During a Cruise from Europe to Antarctica, Proceedings of Nucleation and Atmospheric Aerosols 17-th International Conference Galway, Ireland 2007, Springer, ISBN 978-1-4020-647-6, 368-372, 2007.
Vana, M., Ehn, M., Petäjä, T., Vuollekoski, H., Aalto, P., de Leeuw, G., Ceburnis, D., O'Dowd, C.D., and Kulmala, M.: Characteristic features of air ions at Mace Head on the west coast of Ireland, Atmos. Res., 90, 278–286, 2008.
Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T., and Kulmala, M.: Particle Size Magnifier for Nano-CN Detection, Aerosol Sci. Technol., 45, 4, 533–542, 2011.
Vartiainen, E., Kulmala, M., Ehn, M., Hirsikko, A., Junninen, H., Petäjä, T., Sogacheva, L., Kuokka, S., Hillamo, R., Skorokhod, A., Belikov, I., Elansky, N., and Kerminen, V.-M.: Ion and particle number concentrations and size distributions along the Trans-Siberian railroad, Boreal Environ. Res., 12, 375–396, 2007.
Venzac, H., Sellegri, K., and Laj, P.: Nucleation events detected at the high altitude site of the Puy de Dôme Research Station, France, Boreal Environ. Res., 12, 345–359, 2007.
Venzac, H., Sellegri, K., Laj, P., Villani, P., Bonasoni, P., Marinoni, A., Cristofanelli, P., Calzolari, F., Fuzzi, S., Decesari, S., Facchini, M.-C., Vuillermoz, E., and Verza, G. P.: High frequency new particle formation in the Himalayas, P. Natl. Acad. Sci. USA, 105, 15666–15671, 2008.
Viggiano, A. A.: In situ mass spectrometry and ion chemistry in the stratosphere and troposphere, Mass Spectrom. Rev., 12, 115–137, 1993.
Virkkula, A., Hirsikko, A., Vana, M., Aalto, P. P., Hillamo, R., and Kulmala, M.: Charged particle size distributions and analysis of particle formation events at the Finnish Antarctic research station Aboa, Boreal Environ. Res., 12, 397–408, 2007.
Voisin, D., Smith, J. N., Sakurai, H., McMurry, P. H., and Eisele, F. L.: Thermal Desorption Chemical Ionization Mass Spectrometer for Ultrafine Particle Chemical Composition, Aerosol Sci. Tech., 37, 471–475, 2003.
Weber, R. J., Marti, P., McMurry, P. H., Eisele, F. L., Tanner, D. J., and Jefferson, A.: Measured atmospheric new particle formation rates: implications for nucleation mechanisms, Chem. Eng. Comm., 151, 53–64, 1996.
Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., and Jefferson, A.: Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res., 102, 4375–4385, 1997.
Weber, R. J., McMurry, P. H., Mauldin, L., Tanner, D. J., Eisele, F. L., Brechtel, F. J., Kreidenweis, S. M., Kok, G. L., Schillaswki, R. D., and Baumgardner, D.: A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. Geophys. Res., 103, 16,385–16,396, 1998.
Weber, R. J., McMurry, P. H., Mauldin III, R. L., Tanner, D. J., Eisele, F. L., Clarke, A. D., and Kapustin, V. N.: New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys. Res. Lett., 26(3), 307–310, 1999.
Wilding, R. J. and Harrison, R. G.: Aerosol modulation of small ion growth in coastal air, Atmos. Environ., 39, 5876–5883, 2005.
Winkler, P. M., Steiner, G., Vrtala, A., Vehkamäki, H., Noppel, M., Lehtinen, K. E. J., Reischl, G. P., Wagner, P. E., and Kulmala, M.: Heterogenous Nucleation Experiments Bridging the Scale form Molecular Ion Cluster to Nanoparticles, Science, 7, 1374–1377, 2008.
Yli-Juuti, T., Riipinen, I., Aalto, P. P. Nieminen, T., Maenhaut, W., Janssens, I. A., Clayas , S. I., Ocskay, R., Hoffer, A., Imre, K., and Kulmala M.: Characteristics of new particle formation events and cluster ions at K-puszta, Hungary, Boreal Environ. Res., 14, 683–698, 2009.
Yu, F.: Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table, J. Geophys. Res., 115, D03206, https://doi.org/10.1029/2009JD012630, 2010.
Yu, F. and Turco, R. P.: Ultrafine aerosol formation via ion-mediated nucleation, Geophys. Res. Lett., 27, 883–886, 2000.
Yu, F. and Turco, R.: Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms, Atmos. Chem. Phys., 8, 6085–6102, https://doi.org/10.5194/acp-8-6085-2008, 2008.
Yu, F., Luo, G., Bates, T. S., Andersson, B., Clarke, A., Kapustin, V., Yantosca, R. M., Wang, Y., and Wu, S.: Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanism, J. Geophys. Res., 115, D17205, https://doi.org/10.1029/2009JD013473, 2010.
Yunker, E. A.: The mobility spectrum of atmospheric ions, Terr. Magn. Atmos. Electr., 45, 127–132, 1940.
Zeleny, J.: On the ratio of velocities of the two ions produced in gases by Röngten radiation, and on some related phenomena, Philos. Mag., 46, 120–154, 1898.
Zeleny, J.: The velocity of ions produced in gases by Röntgen rays, Philos. Trans. Roy. Soc. A, 195, 193–234, 1900.
Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H.: Radial differential mobility analyzer, Aerosol Sci. Techn., 23, 357–72, 1995.
Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C., and McMurry, P. H.: Chemical Ionization Mass Spectrometric Measurements of Atmospheric Neutral Clusters using the Cluster-CIMS, J. Geophys. Res., 115, D08205. https://doi.org/10.1029/2009JD012606, 2010.
Zwang, L. R. and Komarov, N. N.: A study of small ion spectra in the free atmosphere, Izv. Acad. Sci. USSR, Geophys. Series, 1167–1176, 1959.