Articles | Volume 11, issue 13
Atmos. Chem. Phys., 11, 6549–6557, 2011
https://doi.org/10.5194/acp-11-6549-2011
Atmos. Chem. Phys., 11, 6549–6557, 2011
https://doi.org/10.5194/acp-11-6549-2011

Research article 08 Jul 2011

Research article | 08 Jul 2011

Model HULIS compounds in nanoaerosol clusters – investigations of surface tension and aggregate formation using molecular dynamics simulations

T. Hede et al.

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021,https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021,https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Wildfire smoke-plume rise: a simple energy balance parameterization
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021,https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021,https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary

Cited articles

Abascal, J. L. F. and Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys., 123, 234505, https://doi.org/10.1063/1.2121687, 2005.
Bahadur, R. and Russel, L. M.: Effect of surface tension from MD simulations on size-dependent deliquescence of NaCl nanoparticles, Aerosol Sci. Tech., 42, 369–376, 2008.
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P.: The missing term in effective pair potentials, J. Phys. Chem., 91, 6269–6271, 1987.
Chakraborty, P. and Zachariah, M. R.: Sticking coefficient and processing of water vapor on organic coated nanoaerosols, J. Phys. Chem. A, 112, 966–972, 2008.
Chen, F. and Smith, P. E.: Simulated surface tensions of common water models, J. Chem. Phys., 126, 221101, https://doi.org/10.1063/1.2745718, 2007.
Download
Altmetrics
Final-revised paper
Preprint