Articles | Volume 10, issue 2
Atmos. Chem. Phys., 10, 669–693, 2010
https://doi.org/10.5194/acp-10-669-2010

Special issue: POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface...

Atmos. Chem. Phys., 10, 669–693, 2010
https://doi.org/10.5194/acp-10-669-2010

  25 Jan 2010

25 Jan 2010

Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

D. Hirdman et al.

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021,https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021,https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Wildfire smoke-plume rise: a simple energy balance parameterization
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021,https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021,https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary

Cited articles

Aas, W., Solberg, S., Manø, S., and Yttri, K. E.: Monitoring of long range transported air pollutants, annual report for 2007, Norwegian Institute for Air Research, Kjeller, 2008.
Anlauf, K., Mickle, R., and Trivett, N.: Measurement of ozone during polar sunrise experiment 1992, J. Geophys. Res., 99, 25345–25353, 1994.
Arnott, W., Hamasha, K., Moosmuller, H., Sheridan, P., and Ogren, J.: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci. Technol., 39, 17–29, 2005.
Ashbaugh, L.: A statistical trajectory technique for determining air-pollution source regions, Journal of the Air Pollution Control Association, 33, 1096–1098, 1983.
Ashbaugh, L., Malm, W., and Sadeh, W.: A residence time probability analysis of sulfur concentrations at grand-canyon-national-park, Atmos. Environ., 19, 1263–1270, 1985.
Download
Altmetrics
Final-revised paper
Preprint