Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs
Yuxin Zhao
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Jiming Li
CORRESPONDING AUTHOR
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Lijie Zhang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Cong Deng
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Yarong Li
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Bida Jian
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Jianping Huang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Related authors
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Jiayi Li, Yang Wang, Jiming Li, Weiyuan Zhang, Lijie Zhang, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3601, https://doi.org/10.5194/egusphere-2024-3601, 2024
Short summary
Short summary
A key challenge in climate projections is the uncertainty in cloud water response to anthropogenic aerosols, especially its time-dependence on diurnal microphysical-dynamic boundary layer feedback. Geostationary satellite shows neglecting the variations induces a compensation up to 45% of the initial cooling effect from increased cloud droplet concentration. The results provide new insights in aerosol-cloud interactions, verifying this is a significant yet often overlooked source of uncertainty.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021, https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.
Yueming Cheng, Tie Dai, Jiming Li, and Guangyu Shi
Atmos. Chem. Phys., 20, 15307–15322, https://doi.org/10.5194/acp-20-15307-2020, https://doi.org/10.5194/acp-20-15307-2020, 2020
Short summary
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
Cited articles
Angevine, W. M., Baltink, H. K., and Bosveld, F. C.: Observations Of The
Morning Transition Of The Convective Boundary Layer, Bound.-Layer Meteor.,
101, 209–227, https://doi.org/10.1023/A:1019264716195, 2001.
Betts, A. K., Desjardins, R., Worth, D., and Beckage, B.: Climate coupling
between temperature, humidity, precipitation, and cloud cover over the
Canadian Prairies, J. Geophys. Res.-Atmos., 119, 13305–31326,
https://doi.org/10.1002/2014JD022511, 2014.
Binder, H., Boettcher, M., Joos, H., Sprenger, M., and Wernli, H.: Vertical cloud structure of warm conveyor belts – a comparison and evaluation of ERA5 reanalysis, CloudSat and CALIPSO data, Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, 2020.
Bodas-Salcedo, A.: Cloud Condensate and Radiative Feedbacks at Midlatitudes
in an Aquaplanet, Geophys. Res. Lett., 45, 3635–3643,
https://doi.org/10.1002/2018GL077217, 2018.
Borrmann, S., Solomon, S., Dye, J. E., and Luo, B.: The potential of cirrus
clouds for heterogeneous chlorine activation, Geophys. Res. Lett., 23,
2133–2136, https://doi.org/10.1029/96GL01957, 1996.
Boudala, F. S. and Milbrandt, J. A.: Evaluations of the Climatologies of Three Latest Cloud Satellite Products Based on Passive Sensors (ISCCP-H, Two CERES) against the CALIPSO-GOCCP, Remote Sens., 13, 5150, https://doi.org/10.3390/rs13245150, 2021.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014.
Chen, X. L., Ma, Y. M., Kelder, H., Su, Z., and Yang, K.: On the behaviour of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys., 11, 5113–5122, https://doi.org/10.5194/acp-11-5113-2011, 2011.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai – Tibet Plateau, J. Geophys. Res., 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Chepfer, H., Brogniez, H., and Noel, V.: Diurnal variations of cloud and
relative humidity profiles across the tropics, Sci. Rep., 9, 16045,
https://doi.org/10.1038/s41598-019-52437-6, 2019.
Cherian, R. and Quaas, J.: Trends in AOD, Clouds, and Cloud Radiative
Effects in Satellite Data and CMIP5 and CMIP6 Model Simulations Over Aerosol
Source Regions, Geophys. Res. Lett., 47, e2020GL087132,
https://doi.org/10.1029/2020GL087132, 2020.
CLOUDSAT: 2B-Geoprof-lidar product, CloudSat Data Processing Center [data set], https://www.cloudsat.cira.colostate.edu/data-products/2b-geoprof-lidar, last access: 17 July 2022.
Dai, A. and Trenberth, K. E.: The Diurnal Cycle and Its Depiction in the
Community Climate System Model, J. Climate, 17, 930–951,
https://doi.org/10.1175/1520-0442(2004)017<0930:Tdcaid>2.0.Co;2, 2004.
Dauhut, T., Noel, V., and Dion, I.-A.: The diurnal cycle of the clouds extending above the tropical tropopause observed by spaceborne lidar, Atmos. Chem. Phys., 20, 3921–3929, https://doi.org/10.5194/acp-20-3921-2020, 2020.
Devasthale, A. and Fueglistaler, S.: A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments, Atmos. Chem. Phys., 10, 4573–4582, https://doi.org/10.5194/acp-10-4573-2010, 2010.
Duan, A. and Wu, G.: Change of cloud amount and the climate warming on the
Tibetan Plateau, Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006GL027946, 2006.
ECMWF: IFS Documentation CY41R2 – Part IV: Physical Processes, in: IFS Documentation CY41R2, IFS Documentation, 4, ECMWF, https://doi.org/10.21957/tr5rv27xu, 2016.
Engström, A., Bender, F. A.-M., Charlson, R. J., and Wood, R.: The
nonlinear relationship between albedo and cloud fraction on near-global,
monthly mean scale in observations and in the CMIP5 model ensemble, Geophys.
Res. Lett., 42, 9571–9578, https://doi.org/10.1002/2015GL066275, 2015.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feofilov, A. G. and Stubenrauch, C. J.: Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders, Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019, 2019.
Forster, P. M. d. F. and Shine, K. P.: Assessing the climate impact of trends in stratospheric water vapor, Geophys. Res. Lett., 29, 6, https://doi.org/10.1029/2001GL013909, 2002.
Fu, Q., Hu, Y., and Yang, Q.: Identifying the top of the tropical tropopause
layer from vertical mass flux analysis and CALIPSO lidar cloud observations,
Geophys. Res. Lett., 34, L14813, https://doi.org/10.1029/2007GL030099, 2007.
Fusina, F., Spichtinger, P., and Lohmann, U.: Impact of ice supersaturated
regions and thin cirrus on radiation in the midlatitudes, J. Geophys.
Res.-Atmos., 112, D24S14, https://doi.org/10.1029/2007JD008449, 2007.
Gasparini, B., Blossey, P. N., Hartmann, D. L., Lin, G., and Fan, J.: What
Drives the Life Cycle of Tropical Anvil Clouds?, J. Adv. Model. Earth Syst.,
11, 2586–2605, https://doi.org/10.1029/2019MS001736, 2019.
Gasparini, B., McGraw, Z., Storelvmo, T., and Lohmann, U.: To what extent
can cirrus cloud seeding counteract global warming, Environ. Res. Lett., 15, 5, https://doi.org/10.1088/1748-9326/AB71A3, 2020.
Ge, J., Wang, Z., Liu, Y., Su, J., Wang, C., and Dong, Z.: Linkages between
mid-latitude cirrus cloud properties and large-scale meteorology at the
SACOL site, Clim. Dynam., 53, 5035–5046,
https://doi.org/10.1007/s00382-019-04843-9, 2019.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_rad_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation,Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Q9QMY5PBNV1T, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg3_3d_rad_Np: 3d, 3-Hourly, Time-Averaged, Pressure-Level, Assimilation, Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/3UGE8WQXZAOK, 2015b.
Hartmann, D. L., Holton, J. R., and Fu, Q.: The heat balance of the tropical
tropopause, cirrus, and stratospheric dehydration, Geophys. Res. Lett., 28,
1969–1972, https://doi.org/10.1029/2000GL012833, 2001.
He, Q., Li, C., Ma, J., Wang, H., Shi, G., Liang, Z., Luan, Q., Geng, F.,
and Zhou, X.: The Properties and Formation of Cirrus Clouds over the Tibetan
Plateau Based on Summertime Lidar Measurements, J. Atmos. Sci., 70, 901–915,
https://doi.org/10.1175/jas-d-12-0171.1, 2013.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018b.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Heymsfield, A. J.: Precipitation Development in Stratiform Ice Clouds: A
Microphysical and Dynamical Study, J. Atmos. Sci., 34, 367–381,
https://doi.org/10.1175/1520-0469(1977)034<0367:Pdisic>2.0.Co;2, 1977.
Heymsfield, A. J., Krämer, M., Luebke, A., Brown, P., Cziczo, D. J.,
Franklin, C., Lawson, P., Lohmann, U., McFarquhar, G., Ulanowski, Z., and
Van Tricht, K.: Cirrus Clouds, Meteor. Mon., 58, 2.1–2.26,
https://doi.org/10.1175/amsmonographs-d-16-0010.1, 2017.
Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S., Kuehn, R.
E., Vaughan, M. A., and Baum, B.: Global Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud detection and height evaluation using
CALIOP, J. Geophys. Res.-Atmos., 113, D00A19, https://doi.org/10.1029/2008JD009837,
2008.
Imai, T. and Yoshida, R.: Algorithm theoretical basis for Himawari-8 cloud
mask product, Meteorological satellite center technical note, 61, 1–17,
2016.
Karlsson, K.-G. and Devasthale, A.: Inter-Comparison and Evaluation of the
Four Longest Satellite-Derived Cloud Climate Data Records: CLARA-A2, ESA
Cloud CCI V3, ISCCP-HGM, and PATMOS-x, Remote Sens., 10, 1567, https://doi.org/10.3390/rs10101567, 2018.
Kent, G. S., Williams, E. R., Wang, P. H., McCormick, M. P., and Skeens, K.
M.: Surface temperature related variations in tropical cirrus cloud as
measured by SAGE II., J. Climate, 8, 2577–2594,
https://doi.org/10.1175/1520-0442(1995)008<2577:STRVIT>2.0.CO;2, 1995.
Kirk-Davidoff, D. B., Hintsa, E. J., Anderson, J. G., and Keith, D. W.: The
effect of climate change on ozone depletion through changes in stratospheric
water vapour, Nature, 402, 399–401, https://doi.org/10.1038/46521, 1999.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEPs Global Data Assimilation
System, Weather Forecast., 24, 1691–1705,
https://doi.org/10.1175/2009waf2222201.1, 2009.
Knapp, K. R., Young, A. H., Semunegus, H., Inamdar, A. K., and Hankins, W.: Adjusting ISCCP Cloud Detection to Increase Consistency of Cloud Amount and Reduce Artifacts, J. Atmos. Ocean. Technol., 38, 155–165, https://doi.org/10.1175/jtech-d-20-0045.1, 2021.
Kuang, Z. and Bretherton, C. S.: A Mass-Flux Scheme View of a
High-Resolution Simulation of a Transition from Shallow to Deep Cumulus
Convection, J. Atmos. Sci., 63, 1895–1909,
https://doi.org/10.1175/jas3723.1, 2006.
Kukulies, J., Chen, D., and Wang, M.: Temporal and spatial variations of
convection and precipitation over the Tibetan Plateau based on recent
satellite observations. Part I: Cloud climatology derived from CloudSat and
CALIPSO, Int. J. Climatol., 39, 5396–5412, 2019.
Lei, Y., Letu, H., Shang, H., and Shi, J.: Cloud cover over the Tibetan
Plateau and eastern China: a comparison of ERA5 and ERA-Interim with
satellite observations, Clim. Dynam, 54, 2941–2957,
https://doi.org/10.1007/s00382-020-05149-x, 2020.
Letu, H., Nagao, T. M., Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A.
J., Shang, H., Sekiguchi, M., and Kikuchi, M.: Ice cloud properties from
Himawari-8/AHI next-generation geostationary satellite: Capability of the
AHI to monitor the DC cloud generation process,
IEEE T. Geosci. Remote, 57, 3229–3239, 2018.
Letu, H., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J.,
Baran, A. J., Ma, R., Wang, T., and Shang, H.: High-resolution retrieval of
cloud microphysical properties and surface solar radiation using
Himawari-8/AHI next-generation geostationary satellite, Remote Sens.
Environ., 239, 111583, https://doi.org/10.1016/j.rse.2019.111583, 2020.
Li, J., Yi, Y., Minnis, P., Huang, J., Yan, H., Ma, Y., Wang, W., and Kirk
Ayers, J.: Radiative effect differences between multi-layered and
single-layer clouds derived from CERES, CALIPSO, and CloudSat data, J.
Quant. Spectrosc. Radiat. Transf., 112, 361–375,
https://doi.org/10.1016/j.jqsrt.2010.10.006, 2011.
Li, J., Mao, J., and Wang, F.: Comparative study of five current reanalyses
in characterizing total cloud fraction and top-of-the-atmosphere cloud
radiative effects over the Asian monsoon region, Int. J. Climatol., 37,
5047–5067, https://doi.org/10.1002/joc.5143, 2017.
Li, J., Lv, Q., Jian, B., Zhang, M., Zhao, C., Fu, Q., Kawamoto, K., and Zhang, H.: The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau, Atmos. Chem. Phys., 18, 7329–7343, https://doi.org/10.5194/acp-18-7329-2018, 2018.
Li, J., Jian, B., Zhao, C., Zhao, Y., Wang, J., and Huang, J.: Atmospheric
Instability Dominates the Long-Term Variation of Cloud Vertical Overlap Over
the Southern Great Plains Site, J. Geophys. Res.-Atmos., 124, 9691–9701,
https://doi.org/10.1029/2019JD030954, 2019.
Li, Y. and Zhang, M.: Cumulus over the Tibetan Plateau in the Summer Based
on CloudSat–CALIPSO Data, J. Climate, 29, 1219–1230,
https://doi.org/10.1175/jcli-d-15-0492.1, 2016.
Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A
Global Perspective, Mon. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:Ioccow>2.0.Co;2, 1986.
Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent
decades, Int. J. Climatol., 20, 1729–1742,
https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Liu, L., Zheng, J., Ruan, Z., Cui, Z., Hu, Z., Wu, S., Dai, G., and Wu, Y.:
Comprehensive radar observations of clouds and precipitation over the
Tibetan Plateau and preliminary analysis of cloud properties, J. Meteorol.
Res., 29, 546–561, https://doi.org/10.1007/s13351-015-4208-6, 2015.
Louf, V., Jakob, C., Protat, A., Bergemann, M., and Narsey, S.: The
Relationship of Cloud Number and Size With Their Large-Scale Environment in
Deep Tropical Convection, Geophys. Res. Lett., 46, 9203–9212,
https://doi.org/10.1029/2019GL083964, 2019.
Luo, Y., Zhang, R., Qian, W., Luo, Z., and Hu, X.: Intercomparison of Deep
Convection over the Tibetan Plateau–Asian Monsoon Region and Subtropical
North America in Boreal Summer Using CloudSat/CALIPSO Data, J. Climate, 24,
2164–2177, https://doi.org/10.1175/2010JCLI4032.1, 2011.
Ma, Z., Liu, Q., Zhao, C., Shen, X., Wang, Y., Jiang, J. H., Li, Z., and
Yung, Y.: Application and Evaluation of an Explicit Prognostic Cloud-Cover
Scheme in GRAPES Global Forecast System, J. Adv. Model. Earth Syst., 10,
652–667, https://doi.org/10.1002/2017MS001234, 2018.
Ma, Q., You, Q., Ma, Y., Cao, Y., Zhang, J., Niu, M., and Zhang, Y.: Changes
in cloud amount over the Tibetan Plateau and impacts of large-scale
circulation, Atmos. Res., 249, 105332,
https://doi.org/10.1016/j.atmosres.2020.105332, 2021.
Mace, G. G., Benson, S., and Vernon, E.: Cirrus Clouds and the Large-Scale
Atmospheric State: Relationships Revealed by Six Years of Ground-Based Data,
J. Climate, 19, 3257–3278, https://doi.org/10.1175/jcli3786.1, 2006.
Marchand, R., Ackerman, T., Smyth, M., and Rossow, W. B.: A review of cloud
top height and optical depth histograms from MISR, ISCCP, and MODIS, J.
Geophys. Res.-Atmos., 115, D16206, https://doi.org/10.1029/2009JD013422, 2010.
Matsui, T., Masunaga, H., Kreidenweis, S. M., Pielke Sr., R. A., Tao, W.-K.,
Chin, M., and Kaufman, Y. J.: Satellite-based assessment of marine low cloud
variability associated with aerosol, atmospheric stability, and the diurnal
cycle, J. Geophys. Res.-Atmos., 111, D17204, https://doi.org/10.1029/2005JD006097,
2006.
McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W., and Selmer, P.
A.: The Cloud-Aerosol Transport System (CATS): a technology demonstration on
the International Space Station, Proc. Spie, 9612, 34–39,
https://doi.org/10.1117/12.2190841, 2015.
Miao, H., Wang, X., Liu, Y., and Wu, G.: An evaluation of cloud vertical
structure in three reanalyses against CloudSat/cloud-aerosol lidar and
infrared pathfinder satellite observations, Atmos. Sci. Lett., 20, e906,
https://doi.org/10.1002/asl.906, 2019.
Minnis, P., Trepte, Q. Z., Sun-Mack, S., Chen, Y., Doelling, D. R., Young,
D. F., Spangenberg, D. A., Miller, W. F., Wielicki, B. A., Brown, R. R.,
Gibson, S. C., and Geier, E. B.: Cloud Detection in Nonpolar Regions for
CERES Using TRMM VIRS and Terra and Aqua MODIS Data, IEEE T. Geosci. Remote, 46, 3857–3884, https://doi.org/10.1109/TGRS.2008.2001351,
2008.
Molod, A.: Constraints on the Profiles of Total Water PDF in AGCMs from AIRS
and a High-Resolution Model, J. Climate, 25, 8341–8352,
https://doi.org/10.1175/jcli-d-11-00412.1, 2012.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
NASA/LARC/SD/ASDC: CATS-ISS Level 2 Operational Night Mode 7.2 Version 3-01 5 km Profile, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/ISS/CATS/L2O_N-M7.2-V3-01_05kmPro, 2018a.
NASA/LARC/SD/ASDC: CATS-ISS Level 2 Operational Night Mode 7.2 Version 3-01 5 km Layer, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/ISS/CATS/L2O_N-M7.2-V3-01_05kmLay, 2018b.
NASA/LARC/SD/ASDC: CATS-ISS Level 2 Operational Day Mode 7.2 Version 3-01 5 km Profile, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/ISS/CATS/L2O_D-M7.2-V3-01_05kmPro, 2018c.
NASA/LARC/SD/ASDC: CATS-ISS Level 2 Operational Day Mode 7.2 Version 3-01 5 km Layer, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/ISS/CATS/L2O_D-M7.2-V3-01_05kmLay, 2018d.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 5 km Cloud Layer, NASA Langley Atmospheric Science Data Center DAAC [data set], V4-20, https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMCLAY-STANDARD-V4-20, 2018e.
Naud, C. M. and Chen, Y.-H.: Assessment of ISCCP cloudiness over the Tibetan
Plateau using CloudSat-CALIPSO, J. Geophys. Res.-Atmos., 115, D10203, https://doi.org/10.1029/2009JD013053, 2010.
Naud, C. M., Rangwala, I., Xu, M., and Miller, J. R.: A Satellite View of
the Radiative Impact of Clouds on Surface Downward Fluxes in the Tibetan
Plateau, J. Appl. Meteorol. Clim., 54, 479–493,
https://doi.org/10.1175/JAMC-D-14-0183.1, 2015.
Nesbitt, S. W., Gochis, D. J., and Lang, T. J.: The Diurnal Cycle of Clouds
and Precipitation along the Sierra Madre Occidental Observed during
NAME-2004: Implications for Warm Season Precipitation Estimation in Complex
Terrain, J. Hydrometeorol., 9, 728–743,
https://doi.org/10.1175/2008jhm939.1, 2008.
Noel, V., Chepfer, H., Chiriaco, M., and Yorks, J.: The diurnal cycle of cloud profiles over land and ocean between 51° S and 51° N, seen by the CATS spaceborne lidar from the International Space Station, Atmos. Chem. Phys., 18, 9457–9473, https://doi.org/10.5194/acp-18-9457-2018, 2018.
Norris, J. R. and Evan, A. T.: Empirical Removal of Artifacts from the ISCCP
and PATMOS-x Satellite Cloud Records, J. Atmos. Ocean. Tech., 32,
691–702, https://doi.org/10.1175/jtech-d-14-00058.1, 2015.
Ntwali, D. and Chen, H.: Diurnal spatial distributions of aerosol optical
and cloud micro-macrophysics properties in Africa based on MODIS
observations, Atmos. Environ., 182, 252–262,
https://doi.org/10.1016/j.atmosenv.2018.03.054, 2018.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Oreopoulos, L., Cho, N., and Lee, D.: New insights about cloud vertical
structure from CloudSat and CALIPSO observations, J. Geophys. Res.-Atmos.,
122, 9280–9300, https://doi.org/10.1002/2017JD026629, 2017.
Pan, L. and Munchak, L. A.: Relationship of Cloud Top to the Tropopause and Jet Structure from CALIPSO Data, J. Geophys. Res., 116, D12201, https://doi.org/10.1029/2010JD015462, 2011.
Pan, Z., Mao, F., Gong, W., Min, Q., and Wang, W.: The warming of Tibetan
Plateau enhanced by 3D variation of low-level clouds during daytime, Remote
Sens. Environ., 198, 363–368, https://doi.org/10.1016/j.rse.2017.06.024,
2017.
Pauly, R. M., Yorks, J. E., Hlavka, D. L., McGill, M. J., Amiridis, V., Palm, S. P., Rodier, S. D., Vaughan, M. A., Selmer, P. A., Kupchock, A. W., Baars, H., and Gialitaki, A.: Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation, Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, 2019.
Posselt, D. J., Stephens, G. L., and Miller, M.: CLOUDSAT: Adding a New
Dimension to a Classical View of Extratropical Cyclones, B. Am.
Meteorol. Soc., 89, 599–610, https://doi.org/10.1175/bams-89-5-599, 2008.
P-Tree System: Himawari-8, Japan Aerospace Exploration Agency/
Earth Observation Research Center (JAXA/EORC) [data set], https://www.eorc.jaxa.jp/ptree/ (last access: 17 April 2021), 2016.
Rajapakshe, C., Zhang, Z., Yorks, J. E., Yu, H., Tan, Q., Meyer, K.,
Platnick, S., and Winker, D. M.: Seasonally transported aerosol layers over
southeast Atlantic are closer to underlying clouds than previously reported,
Geophys. Res. Lett., 44, 5818–5825, https://doi.org/10.1002/2017GL073559,
2017.
Ramaswamy, V. and Detwiler, A.: Interdependence of radiation and
microphysics in cirrus clouds, J. Atmos. Sci., 43, 2289–2301,
https://doi.org/10.1175/1520-0469(1986)043<2289:Iorami>2.0.Co;2, 1986.
Rangwala, I., Miller, J. R., and Xu, M.: Warming in the Tibetan Plateau:
Possible influences of the changes in surface water vapor, Geophys. Res.
Lett., 36, L06703, https://doi.org/10.1029/2009GL037245, 2009.
Rangwala, I., Miller, J. R., Russell, G. L., and Xu, M.: Using a global
climate model to evaluate the influences of water vapor, snow cover and
atmospheric aerosol on warming in the Tibetan Plateau during the
twenty-first century, Clim. Dynam., 34, 859–872,
https://doi.org/10.1007/s00382-009-0564-1, 2010.
Ren, H. and Pan, X.: Integration dataset of Tibet Plateau boundary, National
Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geogra.tpdc.270099,
2019.
Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H. -C., Gu, W., Sienkiewicz, M., Koster, R. D., Gelaro, R., Stajner, I., and Nielsen, J. E.: The GEOS-5 Data Assimilation System–Documentation of versions 5.0.1, 5.1.0, and 5.2.0, Technical Report Series on Global Modeling and Data Assimilation, NASA Technical Reports 27, 118, https://ntrs.nasa.gov/api/citations/20120011955/downloads/20120011955.pdf (last access: 13 January 2023), 2008.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/jcli-d-11-00015.1, 2011.
Rossow, W. B. and Schiffer, R. A.: Advances in Understanding Clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2288,
https://doi.org/10.1175/1520-0477(1999)080<2261:Aiucfi>2.0.Co;2, 1999.
Rossow, W. B., Walker, A., Golea, V., Knapp, K. R., Young, A., Inamdar A., Hankins, B., and NOAA's Climate Data Record Program: International Satellite Cloud Climatology Project Climate Data Record, H-Series [HGH] NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5QZ281S, 2016.
Rossow, W. B., Knapp, K. R., and Young, A. H.: International Satellite Cloud Climatology Project: Extending the Record, J. Climate, 35, 141–158, https://doi.org/10.1175/jcli-d-21-0157.1, 2021.
Sassen, K. and Cho, B. S.: Subvisual-Thin Cirrus Lidar Dataset for Satellite
Verification and Climatological Research, J. Appl. Meteorol. Clim., 31,
1275–1285, https://doi.org/10.1175/1520-0450(1992)031<1275:Stcldf>2.0.Co;2, 1992.
Sassen, K., Starr, D. O. C., and Uttal, T.: Mesoscale and Microscale
Structure of Cirrus Clouds: Three Case Studies, J. Atmos. Sci., 46, 371–396,
https://doi.org/10.1175/1520-0469(1989)046<0371:Mamsoc>2.0.Co;2, 1989.
Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the
tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res.-Atmos., 114, D00H06, https://doi.org/10.1029/2009JD011916, 2009.
Shang, H., Letu, H., Nakajima, T. Y., Wang, Z., Ma, R., Wang, T., Lei, Y.,
Ji, D., Li, S., and Shi, J.: Diurnal cycle and seasonal variation of cloud
cover over the Tibetan Plateau as determined from Himawari-8 new-generation
geostationary satellite data, Sci. Rep., 8, 1105,
https://doi.org/10.1038/s41598-018-19431-w, 2018.
Song, X., Zhai, X., Liu, L., and Wu, S.: Lidar and Ceilometer Observations
and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau
in 2014 Summer, Atmosphere, 8, 9, https://doi.org/10.3390/atmos8010009, 2017.
Stanfield, R. E., Dong, X., Xi, B., Del Genio, A. D., Minnis, P., Doelling,
D., and Loeb, N.: Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated
Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA
Radiation Budget and CREs, J. Climate, 28, 1842,
https://doi.org/10.1175/jcli-d-14-00249.1, 2015.
Sun, N., Fu, Y., Zhong, L., Zhao, C., and Li, R.: The Impact of Convective
Overshooting on the Thermal Structure over the Tibetan Plateau in Summer
Based on TRMM, COSMIC, Radiosonde, and Reanalysis Data, J. Climate, 34,
8047–8063, https://doi.org/10.1175/jcli-d-20-0849.1, 2021.
Sun, W., Lin, B., Hu, Y., Lukashin, C., Kato, S., and Liu, Z.: On the
consistency of CERES longwave flux and AIRS temperature and humidity
profiles, J. Geophys. Res.-Atmos., 116, D17101, https://doi.org/10.1029/2011JD016153, 2011a.
Sun, W., Videen, G., Kato, S., Lin, B., Lukashin, C., and Hu, Y.: A study of
subvisual clouds and their radiation effect with a synergy of CERES, MODIS,
CALIPSO, and AIRS data, J. Geophys. Res.-Atmos., 116, D22207, https://doi.org/10.1029/2011JD016422, 2011b.
Sun, W., Videen, G., and Mishchenko, M. I.: Detecting super-thin clouds with
polarized sunlight, Geophys. Res. Lett., 41, 688–693,
https://doi.org/10.1002/2013GL058840, 2014.
Sun, W., Baize, R. R., Videen, G., Hu, Y., and Fu, Q.: A method to retrieve super-thin cloud optical depth over ocean background with polarized sunlight, Atmos. Chem. Phys., 15, 11909–11918, https://doi.org/10.5194/acp-15-11909-2015, 2015.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Tian, B., Soden, B. J., and Wu, X.: Diurnal cycle of convection, clouds, and
water vapor in the tropical upper troposphere: Satellites versus a general
circulation model, J. Geophys. Res.-Atmos., 109, D10101, https://doi.org/10.1029/2003JD004117, 2004.
Tian, B., Held, I. M., Lau, N.-C., and Soden, B. J.: Diurnal cycle of
summertime deep convection over North America: A satellite perspective, J.
Geophys. Res.-Atmos., 110, D08108, https://doi.org/10.1029/2004JD005275,
2005.
Tian, H., Xu, X., Chen, H., Huang, R., Zhang, S., and Luo, J.: Analysis
of the Anomalous Signals near the Tropopause before the Overshooting
Convective System Onset over the Tibetan Plateau, Adv. Meteorol., 2020,
8823446, https://doi.org/10.1155/2020/8823446, 2020.
Tian, W., Tian, H., Dhomse, S., and Feng, W.: A study of upper troposphere
and lower stratosphere water vapor above the Tibetan Plateau using AIRS and
MLS data, Atmos. Sci. Lett., 12, 233–239, https://doi.org/10.1002/asl.319,
2011.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather
Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:Rocils>2.0.Co;2, 1993.
Tselioudis, G., Rossow, W. B., Jakob, C., Remillard, J., Tropf, D., and
Zhang, Y.: Evaluation of Clouds, Radiation, and Precipitation in CMIP6
Models Using Global Weather States Derived from ISCCP-H Cloud Property Data,
J. Climate, 34, 7311–7324, https://doi.org/10.1175/jcli-d-21-0076.1, 2021.
Tzallas, V., Hatzianastassiou, N., Benas, N., Meirink, J. F., Matsoukas, C.,
Stackhouse, P., and Vardavas, I.: Evaluation of CLARA-A2 and ISCCP-H Cloud
Cover Climate Data Records over Europe with ECA&D Ground-Based
Measurements, Remote Sens., 11, 212, https://doi.org/10.3390/rs11020212,
2019.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance
estimates from ERA5 and COSMO-REA6 reanalyses using ground and
satellite-based data, Sol. Energy, 164, 339–354,
https://doi.org/10.1016/j.solener.2018.02.059, 2018.
Vignesh, P. P., Jiang, J. H., Kishore, P., Su, H., Smay, T., Brighton, N.,
and Velicogna, I.: Assessment of CMIP6 Cloud Fraction and Comparison with
Satellite Observations, Earth Space Sci., 7, e2019EA000975,
https://doi.org/10.1029/2019EA000975, 2020.
Virts, K. S., Wallace, J. M., Fu, Q., and Ackerman, T. P.: Tropical
Tropopause Transition Layer Cirrus as Represented by CALIPSO Lidar
Observations, J. Atmos. Sci., 67, 3113–3129,
https://doi.org/10.1175/2010jas3412.1, 2010.
Wallace, J. M.: Diurnal Variations in Precipitation and Thunderstorm
Frequency over the Conterminous United States, Mon. Weather Rev., 103, 5,
406–419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2, 1975
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y.: Tibetan Plateau warming
and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330, 2008.
Wang, J. and Rossow, W. B.: Determination of Cloud Vertical Structure from
Upper-Air Observations, J. Appl. Meteorol. Clim., 34, 2243–2258,
https://doi.org/10.1175/1520-0450(1995)034<2243:Docvsf>2.0.Co;2, 1995.
Wang, J., Rossow, W. B., and Zhang, Y.: Cloud Vertical Structure and Its
Variations from a 20-Yr Global Rawinsonde Dataset, J. Climate, 13, 3041–3056,
https://doi.org/10.1175/1520-0442(2000)013<3041:Cvsaiv>2.0.Co;2, 2000.
Wang, J., Jian, B., Wang, G., Zhao, Y., Li, Y., Letu, H., Zhang, M., and Li,
J.: Climatology of Cloud Phase, Cloud Radiative Effects and Precipitation
Properties over the Tibetan Plateau, Remote Sens., 13, 363, https://doi.org/10.3390/rs13030363, 2021.
Wang, Y., Zeng, X., Xu, X., Welty, J., Lenschow, D. H., Zhou, M., and Zhao,
Y.: Why Are There More Summer Afternoon Low Clouds Over the Tibetan Plateau
Compared to Eastern China?, Geophys. Res. Lett., 47, e2020GL089665,
https://doi.org/10.1029/2020GL089665, 2020.
Wang, Y., Li, J., Zhao, Y., Li, Y., Zhao, Y., and Wu, X.: Distinct Diurnal
Cycle of Supercooled Water Cloud Fraction Dominated by Dust Extinction
Coefficient, Geophys. Res. Lett., 49, e2021GL097006,
https://doi.org/10.1029/2021GL097006, 2022.
WCRP: CMIP6, World Climate Research Programme [data set], https://esgf-node.llnl.gov/search/cmip6/, last access: 12 July 2022.
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F.: Thermal Controls on
the Asian Summer Monsoon, Sci. Rep., 2, 404,
https://doi.org/10.1038/srep00404, 2012.
Wu, G., He, B., Duan, A., Liu, Y., and Yu, W.: Formation and variation of
the atmospheric heat source over the Tibetan Plateau and its climate
effects, Adv. Atmos. Sci., 34, 1169–1184,
https://doi.org/10.1007/s00376-017-7014-5, 2017.
Wu, W., Purser, R. J., and Parrish, D. F.: Three-dimensional variational
analysis with spatially inhomogeneous covariances, Mon. Weather Rev., 130,
2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:Tdvaws>2.0.Co;2, 2002.
Xu, X., Lu, C., Shi, X., and Gao, S.: World water tower: An atmospheric
perspective, Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867,
2008.
Xu, X., Shi, X., and Lu, C.: Theory and Application for Warning and
Prediction of Disastrous Weather Downstream from the Tibetan Plateau,
Novinka Science Publishers, Inc. New York, 2012.
Yan, Y., Liu, Y., and Lu, J.: Cloud vertical structure, precipitation, and
cloud radiative effects over Tibetan Plateau and its neighboring regions, J.
Geophys. Res.-Atmos., 121, 5864–5877, https://doi.org/10.1002/2015JD024591,
2016.
Yang, G. and Slingo, J.: The Diurnal Cycle in the Tropics, Mon. Weather
Rev., 129, 4, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2, 2001.
Yang, J., Hu, X., Lei, H., Duan, Y., Lv, F., and Zhao, L.:
Airborne Observations of Microphysical Characteristics of Stratiform Cloud
Over Eastern Side of Taihang Mountains, Chinese J. Atmos. Sci., 45, 88,
https://doi.org/10.3878/j.issn.1006-9895.2004.19202, 2021.
Yang, K., Ding, B., Qin, J., Tang, W., Lu, N., and Lin, C.: Can aerosol
loading explain the solar dimming over the Tibetan Plateau, Geophys. Res.
Lett., 39, L20710, https://doi.org/10.1029/2012GL053733, 2012.
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent Glacial Retreat and
Its Impact on Hydrological Processes on the Tibetan Plateau, China, and
Surrounding Regions, Arct. Antarct. Alp. Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak,
D.: Different glacier status with atmospheric circulations in Tibetan
Plateau and surroundings, Nat. Clim. Chang., 2, 663–667,
https://doi.org/10.1038/NCLIMATE1580, 2012.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., and He, Y.: A review of climatic controls on
δ18O in precipitation over the Tibetan Plateau: Observations and
simulations, Rev. Geophys., 51, 525–548, 2013.
Yeo, H., Kim, M.-H., Son, S.-W., Jeong, J.-H., Yoon, J.-H., Kim, B.-M., and
Kim, S.-W.: Arctic cloud properties and associated radiative effects in the
three newer reanalysis datasets (ERA5, MERRA-2, JRA-55): Discrepancies and
possible causes, Atmos. Res., 270, 106080,
https://doi.org/10.1016/j.atmosres.2022.106080, 2022.
Yin, J. and Porporato, A.: Diurnal cloud cycle biases in climate models,
Nat. Commun., 8, 2269, https://doi.org/10.1038/s41467-017-02369-4, 2017.
Yin, J. and Porporato, A.: Radiative effects of daily cycle of cloud
frequency in past and future climates, Clim. Dynam., 54, 1625–1637,
https://doi.org/10.1007/s00382-019-05077-5, 2020.
Yin, J., Wang, D., Xu, H., and Zhai, G.: An investigation into the
three-dimensional cloud structure over East Asia from the CALIPSO-GOCCP
Data, Sci. China-Earth Sci., 58, 2236–2248,
https://doi.org/10.1007/s11430-015-5205-4, 2015.
Yorks, J. E., McGill, M. J., Palm, S. P., Hlavka, D. L., Selmer, P. A.,
Nowottnick, E. P., Vaughan, M. A., Rodier, S. D., and Hart, W. D.: An
overview of the CATS level 1 processing algorithms and data products,
Geophys. Res. Lett., 43, 4632–4639, https://doi.org/10.1002/2016GL068006,
2016.
Yorks, J. E., Selmer, P. A., Kupchock, A., Nowottnick, E. P., Christian, K.
E., Rusinek, D., Dacic, N., and McGill, M. J.: Aerosol and Cloud Detection
Using Machine Learning Algorithms and Space-Based Lidar Data, Atmosphere,
12, 606, https://doi.org/10.3390/atmos12050606, 2021.
You, Q., Jiao, Y., Lin, H., Min, J., Kang, S., Ren, G., and Meng, X.:
Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface
observations over the Tibetan Plateau, Int. J. Climatol., 34, 2529–2537,
https://doi.org/10.1002/joc.3852, 2014.
Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., and Rossow, W. B.: The International Satellite Cloud Climatology Project H-Series climate data record product, Earth Syst. Sci. Data, 10, 583–593, https://doi.org/10.5194/essd-10-583-2018, 2018.
Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., Choi, M., Okin, G. S., Yorks, J. E., Campbell, J. R., and Marquis, J.: A global analysis of diurnal variability in dust and dust mixture using CATS observations, Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021, 2021.
Zhang, F., Yu, Q.-R., Mao, J.-L., Dan, C., Wang, Y., He, Q., Cheng, T., Chen, C., Liu, D., and Gao, Y.: Possible mechanisms of summer cirrus clouds over the Tibetan Plateau, Atmos. Chem. Phys., 20, 11799–11808, https://doi.org/10.5194/acp-20-11799-2020, 2020a.
Zhang, G., Chen, W., and Xie, H.: Tibetan Plateau's Lake Level and Volume
Changes from NASA's ICESat/ICESat-2 and Landsat Missions, Geophys. Res.
Lett., 46, 13107–13118, https://doi.org/10.1029/2019GL085032, 2019.
Zhang, L., Lau, W., Tao, W., and Li, Z.: Large Wildfires in the Western
United States Exacerbated by Tropospheric Drying Linked to a Multi-Decadal
Trend in the Expansion of the Hadley Circulation, Geophys. Res. Lett., 47,
e2020GL087911, https://doi.org/10.1029/2020GL087911, 2020b.
Zhao, W., Marchand, R., and Fu, Q.: The diurnal cycle of clouds and
precipitation at the ARM SGP site: Cloud radar observations and simulations
from the multiscale modeling framework, J. Geophys. Res.-Atmos., 122,
7519–7536, https://doi.org/10.1002/2016JD026353, 2017.
Zhou, R., Wang, G., and Zhaxi, S.: Cloud vertical structure measurements
from a ground-based cloud radar over the southeastern Tibetan Plateau,
Atmos. Res., 258, 105629, https://doi.org/10.1016/j.atmosres.2021.105629,
2021.
Zhou, T. J. and Zhang, W. X.: Anthropogenic warming of Tibetan Plateau and
constrained future projection, Environ. Res. Lett., 16, 4, https://doi.org/10.1088/1748-9326/abede8, 2021.
Zou, L., Griessbach, S., Hoffmann, L., Gong, B., and Wang, L.: Revisiting global satellite observations of stratospheric cirrus clouds, Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, 2020.
Zou, L., Hoffmann, L., Griessbach, S., Spang, R., and Wang, L.: Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America, Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021, 2021.
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Diurnal variations of clouds play an important role in the radiative budget and precipitation....
Altmetrics
Final-revised paper
Preprint