Articles | Volume 23, issue 21
https://doi.org/10.5194/acp-23-13735-2023
https://doi.org/10.5194/acp-23-13735-2023
Research article
 | Highlight paper
 | 
03 Nov 2023
Research article | Highlight paper |  | 03 Nov 2023

Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline

Katherine L. Ackerman, Alison D. Nugent, and Chung Taing

Related authors

Stochastic daily rainfall generation on tropical islands with complex topography
Lionel Benoit, Lydie Sichoix, Alison D. Nugent, Matthew P. Lucas, and Thomas W. Giambelluca
Hydrol. Earth Syst. Sci., 26, 2113–2129, https://doi.org/10.5194/hess-26-2113-2022,https://doi.org/10.5194/hess-26-2113-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024,https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024,https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024,https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024,https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024,https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary

Cited articles

Ackerman, K. and Nugent, A.: Sea Salt Aerosol Datasets, Zenodo [data set], https://doi.org/10.5281/zenodo.10052135, 2023. a
Andreas, E. L.: A new sea spray generation function for wind speeds up to 32 ms−1, J. Phys. Oceanogr., 28, 2175–2184, 1998. a, b
Andreas, E. L.: A review of the sea spray generation function for the open ocean, Adv. Fluid Mech. Ser., 33, 1–46, 2002. a
Andreas, E. L., Persson, P. O. G., and Hare, J. E.: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions, J. Phys. Oceanogr., 38, 1581–1596, 2008. a
Anguelova, M. D. and Webster, F.: Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps, J. Geophys. Res.-Ocean., 111, C03017, https://doi.org/10.1029/2005JC003158, 2006. a
Download
Executive editor
Giant CCN have long been recognised as highly important in warm marine clouds, as while these are low in number, they often dictate precipitation rates and thus many climate-important properties such as cloud optical thickness and lifetime. However, measuring these particles is remains challenging on a technical level and many models of their production are poorly constrained. This paper presents the results using a new methodology and goes on to explore the role of coastlines in enhancing wave breaking and thus giant CCN production.
Short summary
Sea salt aerosol is an important marine aerosol that may be produced in greater quantities in coastal regions than over the open ocean. This study observed these particles along the windward coastline of O'ahu, Hawai'i, to understand how wind and waves influence their production and dispersal. Overall, wave heights were the strongest variable correlated with changes in aerosol concentrations, while wind speeds played an important role in their horizontal dispersal and vertical mixing.
Altmetrics
Final-revised paper
Preprint